-
Notifications
You must be signed in to change notification settings - Fork 34
/
inference.py
370 lines (316 loc) · 12.9 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import os
import cv2
import glob
from pathlib import Path
import utils
import argparse
import numpy as np
import torch
from utils import convert_state_dict
from models import restormer_arch
from data.preprocess.crop_merge_image import stride_integral
os.sys.path.append('./data/MBD/')
from data.MBD.infer import net1_net2_infer_single_im
def dewarp_prompt(img):
mask = net1_net2_infer_single_im(img,'data/MBD/checkpoint/mbd.pkl')
base_coord = utils.getBasecoord(256,256)/256
img[mask==0]=0
mask = cv2.resize(mask,(256,256))/255
return img,np.concatenate((base_coord,np.expand_dims(mask,-1)),-1)
def deshadow_prompt(img):
h,w = img.shape[:2]
# img = cv2.resize(img,(128,128))
img = cv2.resize(img,(1024,1024))
rgb_planes = cv2.split(img)
result_planes = []
result_norm_planes = []
bg_imgs = []
for plane in rgb_planes:
dilated_img = cv2.dilate(plane, np.ones((7,7), np.uint8))
bg_img = cv2.medianBlur(dilated_img, 21)
bg_imgs.append(bg_img)
diff_img = 255 - cv2.absdiff(plane, bg_img)
norm_img = cv2.normalize(diff_img,None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1)
result_planes.append(diff_img)
result_norm_planes.append(norm_img)
bg_imgs = cv2.merge(bg_imgs)
bg_imgs = cv2.resize(bg_imgs,(w,h))
# result = cv2.merge(result_planes)
result_norm = cv2.merge(result_norm_planes)
result_norm[result_norm==0]=1
shadow_map = np.clip(img.astype(float)/result_norm.astype(float)*255,0,255).astype(np.uint8)
shadow_map = cv2.resize(shadow_map,(w,h))
shadow_map = cv2.cvtColor(shadow_map,cv2.COLOR_BGR2GRAY)
shadow_map = cv2.cvtColor(shadow_map,cv2.COLOR_GRAY2BGR)
# return shadow_map
return bg_imgs
def deblur_prompt(img):
x = cv2.Sobel(img,cv2.CV_16S,1,0)
y = cv2.Sobel(img,cv2.CV_16S,0,1)
absX = cv2.convertScaleAbs(x) # 转回uint8
absY = cv2.convertScaleAbs(y)
high_frequency = cv2.addWeighted(absX,0.5,absY,0.5,0)
high_frequency = cv2.cvtColor(high_frequency,cv2.COLOR_BGR2GRAY)
high_frequency = cv2.cvtColor(high_frequency,cv2.COLOR_GRAY2BGR)
return high_frequency
def appearance_prompt(img):
h,w = img.shape[:2]
# img = cv2.resize(img,(128,128))
img = cv2.resize(img,(1024,1024))
rgb_planes = cv2.split(img)
result_planes = []
result_norm_planes = []
for plane in rgb_planes:
dilated_img = cv2.dilate(plane, np.ones((7,7), np.uint8))
bg_img = cv2.medianBlur(dilated_img, 21)
diff_img = 255 - cv2.absdiff(plane, bg_img)
norm_img = cv2.normalize(diff_img,None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1)
result_planes.append(diff_img)
result_norm_planes.append(norm_img)
result_norm = cv2.merge(result_norm_planes)
result_norm = cv2.resize(result_norm,(w,h))
return result_norm
def binarization_promptv2(img):
result,thresh = utils.SauvolaModBinarization(img)
thresh = thresh.astype(np.uint8)
result[result>155]=255
result[result<=155]=0
x = cv2.Sobel(img,cv2.CV_16S,1,0)
y = cv2.Sobel(img,cv2.CV_16S,0,1)
absX = cv2.convertScaleAbs(x) # 转回uint8
absY = cv2.convertScaleAbs(y)
high_frequency = cv2.addWeighted(absX,0.5,absY,0.5,0)
high_frequency = cv2.cvtColor(high_frequency,cv2.COLOR_BGR2GRAY)
return np.concatenate((np.expand_dims(thresh,-1),np.expand_dims(high_frequency,-1),np.expand_dims(result,-1)),-1)
def dewarping(model,im_path):
INPUT_SIZE=256
im_org = cv2.imread(im_path)
im_masked, prompt_org = dewarp_prompt(im_org.copy())
h,w = im_masked.shape[:2]
im_masked = im_masked.copy()
im_masked = cv2.resize(im_masked,(INPUT_SIZE,INPUT_SIZE))
im_masked = im_masked / 255.0
im_masked = torch.from_numpy(im_masked.transpose(2,0,1)).unsqueeze(0)
im_masked = im_masked.float().to(DEVICE)
prompt = torch.from_numpy(prompt_org.transpose(2,0,1)).unsqueeze(0)
prompt = prompt.float().to(DEVICE)
in_im = torch.cat((im_masked,prompt),dim=1)
# inference
base_coord = utils.getBasecoord(INPUT_SIZE,INPUT_SIZE)/INPUT_SIZE
model = model.float()
with torch.no_grad():
pred = model(in_im)
pred = pred[0][:2].permute(1,2,0).cpu().numpy()
pred = pred+base_coord
## smooth
for i in range(15):
pred = cv2.blur(pred,(3,3),borderType=cv2.BORDER_REPLICATE)
pred = cv2.resize(pred,(w,h))*(w,h)
pred = pred.astype(np.float32)
out_im = cv2.remap(im_org,pred[:,:,0],pred[:,:,1],cv2.INTER_LINEAR)
prompt_org = (prompt_org*255).astype(np.uint8)
prompt_org = cv2.resize(prompt_org,im_org.shape[:2][::-1])
return prompt_org[:,:,0],prompt_org[:,:,1],prompt_org[:,:,2],out_im
def appearance(model,im_path):
MAX_SIZE=1600
# obtain im and prompt
im_org = cv2.imread(im_path)
h,w = im_org.shape[:2]
prompt = appearance_prompt(im_org)
in_im = np.concatenate((im_org,prompt),-1)
# constrain the max resolution
if max(w,h) < MAX_SIZE:
in_im,padding_h,padding_w = stride_integral(in_im,8)
else:
in_im = cv2.resize(in_im,(MAX_SIZE,MAX_SIZE))
# normalize
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2,0,1)).unsqueeze(0)
# inference
in_im = in_im.half().to(DEVICE)
model = model.half()
with torch.no_grad():
pred = model(in_im)
pred = torch.clamp(pred,0,1)
pred = pred[0].permute(1,2,0).cpu().numpy()
pred = (pred*255).astype(np.uint8)
if max(w,h) < MAX_SIZE:
out_im = pred[padding_h:,padding_w:]
else:
pred[pred==0] = 1
shadow_map = cv2.resize(im_org,(MAX_SIZE,MAX_SIZE)).astype(float)/pred.astype(float)
shadow_map = cv2.resize(shadow_map,(w,h))
shadow_map[shadow_map==0]=0.00001
out_im = np.clip(im_org.astype(float)/shadow_map,0,255).astype(np.uint8)
return prompt[:,:,0],prompt[:,:,1],prompt[:,:,2],out_im
def deshadowing(model,im_path):
MAX_SIZE=1600
# obtain im and prompt
im_org = cv2.imread(im_path)
h,w = im_org.shape[:2]
prompt = deshadow_prompt(im_org)
in_im = np.concatenate((im_org,prompt),-1)
# constrain the max resolution
if max(w,h) < MAX_SIZE:
in_im,padding_h,padding_w = stride_integral(in_im,8)
else:
in_im = cv2.resize(in_im,(MAX_SIZE,MAX_SIZE))
# normalize
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2,0,1)).unsqueeze(0)
# inference
in_im = in_im.half().to(DEVICE)
model = model.half()
with torch.no_grad():
pred = model(in_im)
pred = torch.clamp(pred,0,1)
pred = pred[0].permute(1,2,0).cpu().numpy()
pred = (pred*255).astype(np.uint8)
if max(w,h) < MAX_SIZE:
out_im = pred[padding_h:,padding_w:]
else:
pred[pred==0]=1
shadow_map = cv2.resize(im_org,(MAX_SIZE,MAX_SIZE)).astype(float)/pred.astype(float)
shadow_map = cv2.resize(shadow_map,(w,h))
shadow_map[shadow_map==0]=0.00001
out_im = np.clip(im_org.astype(float)/shadow_map,0,255).astype(np.uint8)
return prompt[:,:,0],prompt[:,:,1],prompt[:,:,2],out_im
def deblurring(model,im_path):
# setup image
im_org = cv2.imread(im_path)
in_im,padding_h,padding_w = stride_integral(im_org,8)
prompt = deblur_prompt(in_im)
in_im = np.concatenate((in_im,prompt),-1)
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2,0,1)).unsqueeze(0)
in_im = in_im.half().to(DEVICE)
# inference
model.to(DEVICE)
model.eval()
model = model.half()
with torch.no_grad():
pred = model(in_im)
pred = torch.clamp(pred,0,1)
pred = pred[0].permute(1,2,0).cpu().numpy()
pred = (pred*255).astype(np.uint8)
out_im = pred[padding_h:,padding_w:]
return prompt[:,:,0],prompt[:,:,1],prompt[:,:,2],out_im
def binarization(model,im_path):
im_org = cv2.imread(im_path)
im,padding_h,padding_w = stride_integral(im_org,8)
prompt = binarization_promptv2(im)
h,w = im.shape[:2]
in_im = np.concatenate((im,prompt),-1)
in_im = in_im / 255.0
in_im = torch.from_numpy(in_im.transpose(2,0,1)).unsqueeze(0)
in_im = in_im.to(DEVICE)
model = model.half()
in_im = in_im.half()
with torch.no_grad():
pred = model(in_im)
pred = pred[:,:2,:,:]
pred = torch.max(torch.softmax(pred,1),1)[1]
pred = pred[0].cpu().numpy()
pred = (pred*255).astype(np.uint8)
pred = cv2.resize(pred,(w,h))
out_im = pred[padding_h:,padding_w:]
return prompt[:,:,0],prompt[:,:,1],prompt[:,:,2],out_im
def get_args():
parser = argparse.ArgumentParser(description='Params')
parser.add_argument('--model_path', nargs='?', type=str, default='./checkpoints/docres.pkl',help='Path of the saved checkpoint')
parser.add_argument('--im_path', nargs='?', type=str, default='./distorted/',
help='Path of input document image')
parser.add_argument('--out_folder', nargs='?', type=str, default='./restorted/',
help='Folder of the output images')
parser.add_argument('--task', nargs='?', type=str, default='dewarping',
help='task that need to be executed')
parser.add_argument('--save_dtsprompt', nargs='?', type=int, default=0,
help='Width of the input image')
args = parser.parse_args()
possible_tasks = ['dewarping','deshadowing','appearance','deblurring','binarization','end2end']
assert args.task in possible_tasks, 'Unsupported task, task must be one of '+', '.join(possible_tasks)
return args
def model_init(args):
# prepare model
model = restormer_arch.Restormer(
inp_channels=6,
out_channels=3,
dim = 48,
num_blocks = [2,3,3,4],
num_refinement_blocks = 4,
heads = [1,2,4,8],
ffn_expansion_factor = 2.66,
bias = False,
LayerNorm_type = 'WithBias',
dual_pixel_task = True
)
if DEVICE.type == 'cpu':
state = convert_state_dict(torch.load(args.model_path, map_location='cpu')['model_state'])
else:
state = convert_state_dict(torch.load(args.model_path, map_location='cuda:0')['model_state'])
model.load_state_dict(state)
model.eval()
model = model.to(DEVICE)
return model
def inference_one_im(model,im_path,task):
if task=='dewarping':
prompt1,prompt2,prompt3,restorted = dewarping(model,im_path)
elif task=='deshadowing':
prompt1,prompt2,prompt3,restorted = deshadowing(model,im_path)
elif task=='appearance':
prompt1,prompt2,prompt3,restorted = appearance(model,im_path)
elif task=='deblurring':
prompt1,prompt2,prompt3,restorted = deblurring(model,im_path)
elif task=='binarization':
prompt1,prompt2,prompt3,restorted = binarization(model,im_path)
elif task=='end2end':
prompt1,prompt2,prompt3,restorted = dewarping(model,im_path)
cv2.imwrite('restorted/step1.jpg',restorted)
prompt1,prompt2,prompt3,restorted = deshadowing(model,'restorted/step1.jpg')
cv2.imwrite('restorted/step2.jpg',restorted)
prompt1,prompt2,prompt3,restorted = appearance(model,'restorted/step2.jpg')
# os.remove('restorted/step1.jpg')
# os.remove('restorted/step2.jpg')
return prompt1,prompt2,prompt3,restorted
def save_results(
img_path: str,
out_folder: str,
task: str,
save_dtsprompt: bool,
):
im_name = os.path.split(img_path)[-1]
im_format = '.'+im_name.split('.')[-1]
save_path = os.path.join(out_folder, im_name.replace(im_format, '_' + task + im_format))
cv2.imwrite(save_path, restorted)
if save_dtsprompt:
cv2.imwrite(save_path.replace(im_format, '_prompt1' + im_format), prompt1)
cv2.imwrite(save_path.replace(im_format, '_prompt2' + im_format), prompt2)
cv2.imwrite(save_path.replace(im_format, '_prompt3' + im_format), prompt3)
if __name__ == '__main__':
## model init
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args = get_args()
model = model_init(args)
img_source = args.im_path
if Path(img_source).is_dir():
img_paths = glob.glob(os.path.join(img_source, '*'))
for img_path in img_paths:
## inference
prompt1,prompt2,prompt3,restorted = inference_one_im(model,img_path,args.task)
## results saving
save_results(
img_path=img_path,
out_folder=args.out_folder,
task=args.task,
save_dtsprompt=args.save_dtsprompt,
)
else:
## inference
prompt1,prompt2,prompt3,restorted = inference_one_im(model,img_source,args.task)
## results saving
save_results(
img_path=img_source,
out_folder=args.out_folder,
task=args.task,
save_dtsprompt=args.save_dtsprompt,
)