forked from lukas-blecher/LaTeX-OCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
88 lines (79 loc) · 3.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from dataset.dataset import Im2LatexDataset
import os
import sys
import argparse
import logging
import yaml
import numpy as np
import torch
import torch.optim as optim
import torch.nn as nn
from munch import Munch
from tqdm.auto import tqdm
import wandb
from eval import evaluate
from models import get_model
from utils import *
def train(args):
dataloader = Im2LatexDataset().load(args.data)
dataloader.update(**args, test=False)
valdataloader = Im2LatexDataset().load(args.valdata)
valargs = args.copy()
valargs.update(batchsize=args.testbatchsize, keep_smaller_batches=True, test=True)
valdataloader.update(**valargs)
device = args.device
model = get_model(args, training=True)
if args.load_chkpt is not None:
model.load_state_dict(torch.load(args.load_chkpt, map_location=device))
encoder, decoder = model.encoder, model.decoder
def save_models(e):
torch.save(model.state_dict(), os.path.join(args.out_path, '%s_e%02d.pth' % (args.name, e+1)))
yaml.dump(dict(args), open(os.path.join(args.out_path, 'config.yaml'), 'w+'))
opt = get_optimizer(args.optimizer)(model.parameters(), args.lr, betas=args.betas)
scheduler = get_scheduler(args.scheduler)(opt, step_size=args.lr_step, gamma=args.gamma)
try:
for e in range(args.epoch, args.epochs):
args.epoch = e
dset = tqdm(iter(dataloader))
for i, (seq, im) in enumerate(dset):
if seq is not None and im is not None:
opt.zero_grad()
tgt_seq, tgt_mask = seq['input_ids'].to(device), seq['attention_mask'].bool().to(device)
encoded = encoder(im.to(device))
loss = decoder(tgt_seq, mask=tgt_mask, context=encoded)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1)
opt.step()
scheduler.step()
dset.set_description('Loss: %.4f' % loss.item())
if args.wandb:
wandb.log({'train/loss': loss.item()})
if (i+1) % args.sample_freq == 0:
evaluate(model, valdataloader, args, num_batches=int(args.valbatches*e/args.epochs), name='val')
if (e+1) % args.save_freq == 0:
save_models(e)
if args.wandb:
wandb.log({'train/epoch': e+1})
except KeyboardInterrupt:
if e >= 2:
save_models(e)
raise KeyboardInterrupt
save_models(e)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train model')
parser.add_argument('--config', default='settings/debug.yaml', help='path to yaml config file', type=argparse.FileType('r'))
parser.add_argument('-d', '--data', default='dataset/data/train.pkl', type=str, help='Path to Dataset pkl file')
parser.add_argument('--no_cuda', action='store_true', help='Use CPU')
parser.add_argument('--debug', action='store_true', help='DEBUG')
parser.add_argument('--resume', help='path to checkpoint folder', action='store_true')
parsed_args = parser.parse_args()
with parsed_args.config as f:
params = yaml.load(f, Loader=yaml.FullLoader)
args = parse_args(Munch(params), **vars(parsed_args))
logging.getLogger().setLevel(logging.DEBUG if parsed_args.debug else logging.WARNING)
seed_everything(args.seed)
if args.wandb:
if not parsed_args.resume:
args.id = wandb.util.generate_id()
wandb.init(config=dict(args), resume='allow', name=args.name, id=args.id)
train(args)