From 66ca3418872943de9167074992b94f1172c6f474 Mon Sep 17 00:00:00 2001 From: Zeref996 <825276847@qq.com> Date: Mon, 9 Dec 2024 08:50:45 +0000 Subject: [PATCH] plt add nlp case, test=model --- .../layoutlmv2/layoutlmv2_model.py | 41 ------------------- .../transformers/layoutxlm/layoutxlm_model.py | 38 ----------------- 2 files changed, 79 deletions(-) delete mode 100644 framework/e2e/PaddleLT_new/layerNLPcase/debug/case_bug/transformers/layoutlmv2/layoutlmv2_model.py delete mode 100644 framework/e2e/PaddleLT_new/layerNLPcase/debug/case_bug/transformers/layoutxlm/layoutxlm_model.py diff --git a/framework/e2e/PaddleLT_new/layerNLPcase/debug/case_bug/transformers/layoutlmv2/layoutlmv2_model.py b/framework/e2e/PaddleLT_new/layerNLPcase/debug/case_bug/transformers/layoutlmv2/layoutlmv2_model.py deleted file mode 100644 index 5eeb853370..0000000000 --- a/framework/e2e/PaddleLT_new/layerNLPcase/debug/case_bug/transformers/layoutlmv2/layoutlmv2_model.py +++ /dev/null @@ -1,41 +0,0 @@ -import paddle -import numpy as np -from paddlenlp.transformers import LayoutLMv2Model, LayoutLMv2Tokenizer - -def LayerCase(): - """模型库中间态""" - model = LayoutLMv2Model.from_pretrained('layoutlmv2-base-uncased') - return model - -def create_inputspec(): - inputspec = ( - paddle.static.InputSpec(shape=(-1, 13), dtype=paddle.float32, stop_gradient=False), - paddle.static.InputSpec(shape=(-1, 13, 4), dtype=paddle.int64, stop_gradient=False), - paddle.static.InputSpec(shape=(-1, 3, 224, 224), dtype=paddle.float32, stop_gradient=False), - paddle.static.InputSpec(shape=(-1, 13), dtype=paddle.float32, stop_gradient=False), - ) - return inputspec - - -def create_tensor_inputs(): - tokenizer = LayoutLMv2Tokenizer.from_pretrained('layoutlmv2-base-uncased') - inputs_dict = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!") - inputs = ( - paddle.to_tensor([inputs_dict['input_ids']], stop_gradient=False), - paddle.to_tensor(np.random.random((1, 13, 4)).astype("int64"), stop_gradient=False), - paddle.to_tensor(np.random.random((1, 3, 224, 224)), stop_gradient=False), - paddle.to_tensor([inputs_dict['token_type_ids']], stop_gradient=False), - ) - return inputs - - -def create_numpy_inputs(): - tokenizer = LayoutLMv2Tokenizer.from_pretrained('layoutlmv2-base-uncased') - inputs_dict = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!") - inputs = ( - np.array([inputs_dict['input_ids']]), - np.random.random((1, 13, 4)).astype("int64"), - np.random.random((1, 3, 224, 224)), - np.array([inputs_dict['token_type_ids']]), - ) - return inputs diff --git a/framework/e2e/PaddleLT_new/layerNLPcase/debug/case_bug/transformers/layoutxlm/layoutxlm_model.py b/framework/e2e/PaddleLT_new/layerNLPcase/debug/case_bug/transformers/layoutxlm/layoutxlm_model.py deleted file mode 100644 index 894c31cce0..0000000000 --- a/framework/e2e/PaddleLT_new/layerNLPcase/debug/case_bug/transformers/layoutxlm/layoutxlm_model.py +++ /dev/null @@ -1,38 +0,0 @@ -import paddle -import numpy as np -from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer - -def LayerCase(): - """模型库中间态""" - model = LayoutXLMModel.from_pretrained('layoutxlm-base-uncased') - return model - -def create_inputspec(): - inputspec = ( - paddle.static.InputSpec(shape=(-1, 15), dtype=paddle.float32, stop_gradient=False), - paddle.static.InputSpec(shape=(-1, 15, 4), dtype=paddle.int64, stop_gradient=False), - paddle.static.InputSpec(shape=(-1, 3, 224, 224), dtype=paddle.float32, stop_gradient=False), - ) - return inputspec - - -def create_tensor_inputs(): - tokenizer = LayoutXLMTokenizer.from_pretrained('layoutxlm-base-uncased') - inputs_dict = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!") - inputs = ( - paddle.to_tensor([inputs_dict['input_ids']], stop_gradient=False), - paddle.to_tensor(np.random.random((1, 15, 4)).astype("int64"), stop_gradient=False), - paddle.to_tensor(np.random.random((1, 3, 224, 224)), stop_gradient=False), - ) - return inputs - - -def create_numpy_inputs(): - tokenizer = LayoutXLMTokenizer.from_pretrained('layoutxlm-base-uncased') - inputs_dict = tokenizer("Welcome to use PaddlePaddle and PaddleNLP!") - inputs = ( - np.array([inputs_dict['input_ids']]), - np.random.random((1, 15, 4)).astype("int64"), - np.random.random((1, 3, 224, 224)), - ) - return inputs