-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
163 lines (145 loc) · 5.71 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import seaborn as sns
import matplotlib as mpl
from matplotlib import pyplot as plt
import matplotlib.ticker as ticker
import matplotlib.font_manager as font_manager
import marsilea as ma
import marsilea.plotter as mp
# plt.rcParams['figure.dpi'] = 150
font_dirs = ["/public/home/mowp/test/fonts/"]
font_files = font_manager.findSystemFonts(fontpaths=font_dirs)
for font_file in font_files:
font_manager.fontManager.addfont(font_file)
plt.rcParams["font.family"] = "Arial"
sns.despine(top=True, right=True)
from itertools import product
from functools import reduce
import patchworklib as pw
from jpy_tools.otherTools import pwRecoverSeaborn, pwStack, F, pwShow
pw.show = pwShow
fc_recoverSns = pwRecoverSeaborn()
import seaborn.objects as so
from cycler import cycler
dt_snsStyle = {**sns.axes_style('ticks'), "legend.frameon": False, "axes.spines.top":False, "axes.spines.right":False, "axes.prop_cycle":cycler(color=['grey'])}
import pandas as pd
import numpy as np
from typing import Literal
import sklearn
def heatmapMultiGeneInDifferentTime(ad, layer, ls_genes, ls_names, cbLabel, sort=False, scale=False, cbSide='right', width=3.3, height=6, cmap='Reds',**kwargs):
_df = ad[:, ls_genes].to_df(layer).T
_df.index = ls_names
if sort:
_df = _df.assign(temp=_df.idxmax(1)).sort_values('temp').drop(columns='temp')
if scale:
_ar = sklearn.preprocessing.minmax_scale(_df, axis=1)
else:
_ar = _df.values
_df = pd.DataFrame(_ar, index=_df.index, columns=_df.columns)
# import pdb; pdb.set_trace()
h1 = ma.Heatmap(
_ar, cmap=cmap, label=cbLabel, width=width, height=height, **kwargs
)
h1.hsplit(labels=_df.index, order=_df.index, spacing=0.005)
# h1.add_dendrogram('right')
h1.add_left(ma.plotter.Labels(_df.index, fontstyle='italic'), pad=0.1)
h1.add_top(ma.plotter.Labels(_df.columns, rotation=0, align="center"), pad=0.01)
h1.add_legends(
pad=0.1,
)
h1.add_top(ma.plotter.Title("CT (Hour)"))
# h1.add_dendrogram('left', method='ward')
h1.add_legends(side=cbSide)
h1.render()
return h1
def heatmapSingleGeneMultiCluster(ad, layer, gene, geneName, clusterKey, cbLabel, cbSide, sortby: Literal["cluster", "peak", "phase"] = "phase", scale=False, cmap='Reds', inputIsInObs=False,**kwargs):
def getPhase(x, y):
def _cos(x, a, b, c):
return a * np.cos((np.pi / 12) * x - (np.pi / 12) * b) + c
from scipy.optimize import curve_fit
popt, pcov = curve_fit(_cos, x, y, bounds=([0, -12, 0], [np.inf, 12, np.inf]))
std = np.sqrt(np.diag(pcov))[1]
return popt[1]
if not inputIsInObs:
_df = (
ad[:, gene]
.to_df(layer)
.merge(ad.obs[["CT", clusterKey]], left_index=True, right_index=True)
.pivot_table(index=clusterKey, columns="CT", values=gene)
)
else:
_df = ad.obs[[gene, "CT", clusterKey]].pivot_table(index=clusterKey, columns="CT", values=gene)
if scale:
_ar = sklearn.preprocessing.minmax_scale(_df, axis=1)
_df = pd.DataFrame(_ar, index=_df.index, columns=_df.columns)
if sortby == "cluster":
_df = _df.sort_index(key=lambda x: x.str.split(',').str[0].astype(int))
elif sortby == "peak":
_df = _df.loc[_df.idxmax(axis=1).sort_values().index]
elif sortby == "phase":
_df = (
_df.assign(
phase=[
getPhase(np.linspace(0, 22, 12), x[1].values)
for x in _df.iterrows()
]
)
.sort_values("phase")
.drop(columns=["phase"])
)
h = ma.Heatmap(
_df.values, cmap=cmap, label=cbLabel, width=3.3, height=6, **kwargs
)
# h.hsplit(labels=_df.index, order=_df.index, spacing=0.005)
h.add_top(ma.plotter.Labels(_df.columns, rotation=0, align="center"), pad=0.01)
h.add_legends(
pad=0.1,
)
h.add_top(ma.plotter.Title("CT (Hour)", fontsize=10))
h.add_top(ma.plotter.Title(geneName, fontsize=16))
h.add_left(ma.plotter.Labels(_df.index), pad=0.1, name='clusterLabel')
h.add_legends(side=cbSide)
h.render()
return h
class SoLineForMa(mp.base.StatsBase):
def __init__(self, data, df, label, gene, name):
self.set_data(data)
self.df = df
self.label = label
self.gene = gene
self.name = name
def render_ax(self, spec):
ax = spec.ax
data = self.df
gene = self.gene
name = self.name
g = (
so.Plot(data.query("gene==@gene"), x="CT", y="CPM")
.add(so.Dot(color="#4C72B0"))
.add(so.Line(color="#4C72B0"))
.theme(dt_snsStyle)
.label(color="", y=f"{name}\n(log$_{2}$CPM)", x="")
.on(ax)
.plot()
)
# ax.get_xaxis().set_visible(True)
g._repr_png_()
# plt.close()
import matplotlib.path as mpath
star = mpath.Path.unit_regular_star(6)
class SoMarkForJtkAnno(mp.base.StatsBase):
def __init__(self, data, label, ls_circadianCluster, marksize=None):
self.set_data(data)
self.ls_circadianCluster = ls_circadianCluster
# self.ls_orderedAllCluster = ls_orderedAllCluster
self.label = label
self.marksize=marksize
def render_ax(self, spec):
ax = spec.ax
ls_circadianCluster = self.ls_circadianCluster
ls_orderedAllCluster = spec.data.tolist()[0]
for i, cluster in enumerate(ls_orderedAllCluster):
if cluster in ls_circadianCluster:
ax.scatter(0, i, marker=star, c='#C2383A', s=self.marksize)
print(ax.get_yticklabels())
ax.set_ylim(len(ls_orderedAllCluster)-0.5, -0.5)
ax.axis("off")