-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
214 lines (171 loc) · 6.08 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import io
import logging
import os
import torch
import colorlog
import refile
from tabulate import tabulate
class TqdmToLogger(io.StringIO):
logger = None
level = None
buf = ''
def __init__(self):
super(TqdmToLogger, self).__init__()
self.logger = get_logger('tqdm')
def write(self, buf):
self.buf = buf.strip('\r\n\t ')
def flush(self):
self.logger.info(self.buf)
def get_logger(logger_name='default', debug=False, save_to_dir=None):
if debug:
log_format = (
'%(asctime)s - '
'%(levelname)s : '
'%(name)s - '
'%(pathname)s[%(lineno)d]:'
'%(funcName)s - '
'%(message)s'
)
else:
log_format = (
'%(asctime)s - '
'%(levelname)s : '
'%(name)s - '
'%(message)s'
)
bold_seq = '\033[1m'
colorlog_format = f'{bold_seq} %(log_color)s {log_format}'
colorlog.basicConfig(format=colorlog_format, datefmt='%y-%m-%d %H:%M:%S')
logger = logging.getLogger(logger_name)
if debug:
logger.setLevel(logging.DEBUG)
else:
logger.setLevel(logging.INFO)
if save_to_dir is not None:
fh = logging.FileHandler(os.path.join(save_to_dir, 'log', 'debug.log'))
fh.setLevel(logging.DEBUG)
formatter = logging.Formatter(log_format)
fh.setFormatter(formatter)
logger.addHandler(fh)
fh = logging.FileHandler(
os.path.join(save_to_dir, 'log', 'warning.log'))
fh.setLevel(logging.WARNING)
formatter = logging.Formatter(log_format)
fh.setFormatter(formatter)
logger.addHandler(fh)
fh = logging.FileHandler(os.path.join(save_to_dir, 'log', 'error.log'))
fh.setLevel(logging.ERROR)
formatter = logging.Formatter(log_format)
fh.setFormatter(formatter)
logger.addHandler(fh)
return logger
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
# pred(correct.shape)
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
class TestLogger:
def __init__(self):
self.headers = ['Epoch', 'Acc@1', 'Acc@5', 'MRR', 'LR']
self.data = []
def add_record(self, record):
self.data.append(record)
def print_table(self, record):
self.data.append(record)
print(tabulate(self.data, headers=self.headers, tablefmt="github"))
class MgvSaveHelper(object):
def __init__(self, save_oss=False, oss_path=''):
self.oss_path = oss_path
self.save_oss = save_oss
def set_stauts(self, save_oss=False, oss_path=''):
self.oss_path = oss_path
self.save_oss = save_oss
def get_s3_path(self, path):
return refile.smart_path_join(self.oss_path, path)
def check_s3_path(self, path):
return refile.is_s3(path)
def load_ckpt(self, path, rm_module=True):
if self.check_s3_path(path):
with refile.smart_open(path, "rb") as f:
ckpt = torch.load(f)
else:
ckpt = torch.load(path)
print(f"====> load checkpoint from {path}")
return ckpt
def save_ckpt(self, path, epoch, model, optimizer=None):
if self.save_oss:
# if not self.check_s3_path(path):
if not refile.is_s3(path):
path = self.get_s3_path(path)
with refile.smart_open(path, "wb") as f:
torch.save(
{"epoch": epoch,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict()}, f)
else:
torch.save(
{"epoch": epoch,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict()}, path)
print(f"====> save checkpoint to {path}")
def save_pth(self, path, file):
if self.save_oss:
if not self.check_s3_path(path):
path = self.get_s3_path(path)
with refile.smart_open(path, "wb") as f:
torch.save(file, f)
else:
torch.save(file, path)
print(f"====> save pth to {path}")
def load_pth(self, path):
if self.check_s3_path(path):
with refile.smart_open(path, "rb") as f:
ckpt = torch.load(f)
else:
ckpt = torch.load(path)
print(f"====> load pth from {path}")
return ckpt