-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathnet.py
403 lines (331 loc) · 15 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import torch
import torch.nn as nn
import math
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from einops import rearrange
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
# work with diff dim tensors, not just 2D ConvNets
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
random_tensor = keep_prob + \
torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class AttentionBase(nn.Module):
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,):
super(AttentionBase, self).__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = nn.Parameter(torch.ones(num_heads, 1, 1))
self.qkv1 = nn.Conv2d(dim, dim*3, kernel_size=1, bias=qkv_bias)
self.qkv2 = nn.Conv2d(dim*3, dim*3, kernel_size=3, padding=1, bias=qkv_bias)
self.proj = nn.Conv2d(dim, dim, kernel_size=1, bias=qkv_bias)
def forward(self, x):
# [batch_size, num_patches + 1, total_embed_dim]
b, c, h, w = x.shape
qkv = self.qkv2(self.qkv1(x))
q, k, v = qkv.chunk(3, dim=1)
q = rearrange(q, 'b (head c) h w -> b head c (h w)',
head=self.num_heads)
k = rearrange(k, 'b (head c) h w -> b head c (h w)',
head=self.num_heads)
v = rearrange(v, 'b (head c) h w -> b head c (h w)',
head=self.num_heads)
q = torch.nn.functional.normalize(q, dim=-1)
k = torch.nn.functional.normalize(k, dim=-1)
# transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
# @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
out = (attn @ v)
out = rearrange(out, 'b head c (h w) -> b (head c) h w',
head=self.num_heads, h=h, w=w)
out = self.proj(out)
return out
class Mlp(nn.Module):
"""
MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(self,
in_features,
hidden_features=None,
ffn_expansion_factor = 2,
bias = False):
super().__init__()
hidden_features = int(in_features*ffn_expansion_factor)
self.project_in = nn.Conv2d(
in_features, hidden_features*2, kernel_size=1, bias=bias)
self.dwconv = nn.Conv2d(hidden_features*2, hidden_features*2, kernel_size=3,
stride=1, padding=1, groups=hidden_features, bias=bias)
self.project_out = nn.Conv2d(
hidden_features, in_features, kernel_size=1, bias=bias)
def forward(self, x):
x = self.project_in(x)
x1, x2 = self.dwconv(x).chunk(2, dim=1)
x = F.gelu(x1) * x2
x = self.project_out(x)
return x
class BaseFeatureExtraction(nn.Module):
def __init__(self,
dim,
num_heads,
ffn_expansion_factor=1.,
qkv_bias=False,):
super(BaseFeatureExtraction, self).__init__()
self.norm1 = LayerNorm(dim, 'WithBias')
self.attn = AttentionBase(dim, num_heads=num_heads, qkv_bias=qkv_bias,)
self.norm2 = LayerNorm(dim, 'WithBias')
self.mlp = Mlp(in_features=dim,
ffn_expansion_factor=ffn_expansion_factor,)
def forward(self, x):
x = x + self.attn(self.norm1(x))
x = x + self.mlp(self.norm2(x))
return x
class InvertedResidualBlock(nn.Module):
def __init__(self, inp, oup, expand_ratio):
super(InvertedResidualBlock, self).__init__()
hidden_dim = int(inp * expand_ratio)
self.bottleneckBlock = nn.Sequential(
# pw
nn.Conv2d(inp, hidden_dim, 1, bias=False),
# nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# dw
nn.ReflectionPad2d(1),
nn.Conv2d(hidden_dim, hidden_dim, 3, groups=hidden_dim, bias=False),
# nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, bias=False),
# nn.BatchNorm2d(oup),
)
def forward(self, x):
return self.bottleneckBlock(x)
class DetailNode(nn.Module):
def __init__(self):
super(DetailNode, self).__init__()
# Scale is Ax + b, i.e. affine transformation
self.theta_phi = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
self.theta_rho = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
self.theta_eta = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
self.shffleconv = nn.Conv2d(64, 64, kernel_size=1,
stride=1, padding=0, bias=True)
def separateFeature(self, x):
z1, z2 = x[:, :x.shape[1]//2], x[:, x.shape[1]//2:x.shape[1]]
return z1, z2
def forward(self, z1, z2):
z1, z2 = self.separateFeature(
self.shffleconv(torch.cat((z1, z2), dim=1)))
z2 = z2 + self.theta_phi(z1)
z1 = z1 * torch.exp(self.theta_rho(z2)) + self.theta_eta(z2)
return z1, z2
class DetailFeatureExtraction(nn.Module):
def __init__(self, num_layers=3):
super(DetailFeatureExtraction, self).__init__()
INNmodules = [DetailNode() for _ in range(num_layers)]
self.net = nn.Sequential(*INNmodules)
def forward(self, x):
z1, z2 = x[:, :x.shape[1]//2], x[:, x.shape[1]//2:x.shape[1]]
for layer in self.net:
z1, z2 = layer(z1, z2)
return torch.cat((z1, z2), dim=1)
# =============================================================================
# =============================================================================
import numbers
##########################################################################
## Layer Norm
def to_3d(x):
return rearrange(x, 'b c h w -> b (h w) c')
def to_4d(x, h, w):
return rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
class BiasFree_LayerNorm(nn.Module):
def __init__(self, normalized_shape):
super(BiasFree_LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
normalized_shape = torch.Size(normalized_shape)
assert len(normalized_shape) == 1
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.normalized_shape = normalized_shape
def forward(self, x):
sigma = x.var(-1, keepdim=True, unbiased=False)
return x / torch.sqrt(sigma+1e-5) * self.weight
class WithBias_LayerNorm(nn.Module):
def __init__(self, normalized_shape):
super(WithBias_LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
normalized_shape = torch.Size(normalized_shape)
assert len(normalized_shape) == 1
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.normalized_shape = normalized_shape
def forward(self, x):
mu = x.mean(-1, keepdim=True)
sigma = x.var(-1, keepdim=True, unbiased=False)
return (x - mu) / torch.sqrt(sigma+1e-5) * self.weight + self.bias
class LayerNorm(nn.Module):
def __init__(self, dim, LayerNorm_type):
super(LayerNorm, self).__init__()
if LayerNorm_type == 'BiasFree':
self.body = BiasFree_LayerNorm(dim)
else:
self.body = WithBias_LayerNorm(dim)
def forward(self, x):
h, w = x.shape[-2:]
return to_4d(self.body(to_3d(x)), h, w)
##########################################################################
## Gated-Dconv Feed-Forward Network (GDFN)
class FeedForward(nn.Module):
def __init__(self, dim, ffn_expansion_factor, bias):
super(FeedForward, self).__init__()
hidden_features = int(dim*ffn_expansion_factor)
self.project_in = nn.Conv2d(
dim, hidden_features*2, kernel_size=1, bias=bias)
self.dwconv = nn.Conv2d(hidden_features*2, hidden_features*2, kernel_size=3,
stride=1, padding=1, groups=hidden_features*2, bias=bias)
self.project_out = nn.Conv2d(
hidden_features, dim, kernel_size=1, bias=bias)
def forward(self, x):
x = self.project_in(x)
x1, x2 = self.dwconv(x).chunk(2, dim=1)
x = F.gelu(x1) * x2
x = self.project_out(x)
return x
##########################################################################
## Multi-DConv Head Transposed Self-Attention (MDTA)
class Attention(nn.Module):
def __init__(self, dim, num_heads, bias):
super(Attention, self).__init__()
self.num_heads = num_heads
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
self.qkv = nn.Conv2d(dim, dim*3, kernel_size=1, bias=bias)
self.qkv_dwconv = nn.Conv2d(
dim*3, dim*3, kernel_size=3, stride=1, padding=1, groups=dim*3, bias=bias)
self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.qkv_dwconv(self.qkv(x))
q, k, v = qkv.chunk(3, dim=1)
q = rearrange(q, 'b (head c) h w -> b head c (h w)',
head=self.num_heads)
k = rearrange(k, 'b (head c) h w -> b head c (h w)',
head=self.num_heads)
v = rearrange(v, 'b (head c) h w -> b head c (h w)',
head=self.num_heads)
q = torch.nn.functional.normalize(q, dim=-1)
k = torch.nn.functional.normalize(k, dim=-1)
attn = (q @ k.transpose(-2, -1)) * self.temperature
attn = attn.softmax(dim=-1)
out = (attn @ v)
out = rearrange(out, 'b head c (h w) -> b (head c) h w',
head=self.num_heads, h=h, w=w)
out = self.project_out(out)
return out
##########################################################################
class TransformerBlock(nn.Module):
def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type):
super(TransformerBlock, self).__init__()
self.norm1 = LayerNorm(dim, LayerNorm_type)
self.attn = Attention(dim, num_heads, bias)
self.norm2 = LayerNorm(dim, LayerNorm_type)
self.ffn = FeedForward(dim, ffn_expansion_factor, bias)
def forward(self, x):
x = x + self.attn(self.norm1(x))
x = x + self.ffn(self.norm2(x))
return x
##########################################################################
## Overlapped image patch embedding with 3x3 Conv
class OverlapPatchEmbed(nn.Module):
def __init__(self, in_c=3, embed_dim=48, bias=False):
super(OverlapPatchEmbed, self).__init__()
self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=3,
stride=1, padding=1, bias=bias)
def forward(self, x):
x = self.proj(x)
return x
class Restormer_Encoder(nn.Module):
def __init__(self,
inp_channels=1,
out_channels=1,
dim=64,
num_blocks=[4, 4],
heads=[8, 8, 8],
ffn_expansion_factor=2,
bias=False,
LayerNorm_type='WithBias',
):
super(Restormer_Encoder, self).__init__()
self.patch_embed = OverlapPatchEmbed(inp_channels, dim)
self.encoder_level1 = nn.Sequential(*[TransformerBlock(dim=dim, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor,
bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])])
self.baseFeature = BaseFeatureExtraction(dim=dim, num_heads = heads[2])
self.detailFeature = DetailFeatureExtraction()
def forward(self, inp_img):
inp_enc_level1 = self.patch_embed(inp_img)
out_enc_level1 = self.encoder_level1(inp_enc_level1)
base_feature = self.baseFeature(out_enc_level1)
detail_feature = self.detailFeature(out_enc_level1)
return base_feature, detail_feature, out_enc_level1
class Restormer_Decoder(nn.Module):
def __init__(self,
inp_channels=1,
out_channels=1,
dim=64,
num_blocks=[4, 4],
heads=[8, 8, 8],
ffn_expansion_factor=2,
bias=False,
LayerNorm_type='WithBias',
):
super(Restormer_Decoder, self).__init__()
self.reduce_channel = nn.Conv2d(int(dim*2), int(dim), kernel_size=1, bias=bias)
self.encoder_level2 = nn.Sequential(*[TransformerBlock(dim=dim, num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor,
bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])])
self.output = nn.Sequential(
nn.Conv2d(int(dim), int(dim)//2, kernel_size=3,
stride=1, padding=1, bias=bias),
nn.LeakyReLU(),
nn.Conv2d(int(dim)//2, out_channels, kernel_size=3,
stride=1, padding=1, bias=bias),)
self.sigmoid = nn.Sigmoid()
def forward(self, inp_img, base_feature, detail_feature):
out_enc_level0 = torch.cat((base_feature, detail_feature), dim=1)
out_enc_level0 = self.reduce_channel(out_enc_level0)
out_enc_level1 = self.encoder_level2(out_enc_level0)
if inp_img is not None:
out_enc_level1 = self.output(out_enc_level1) + inp_img
else:
out_enc_level1 = self.output(out_enc_level1)
return self.sigmoid(out_enc_level1), out_enc_level0
if __name__ == '__main__':
height = 128
width = 128
window_size = 8
modelE = Restormer_Encoder().cuda()
modelD = Restormer_Decoder().cuda()