forked from zhongzheng1999/m6A-analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunction.R
209 lines (169 loc) · 7.74 KB
/
function.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
library(ConsensusClusterPlus)
library(pheatmap)
library(survival)
library(survminer)
library(patchwork)
CCP <- function(matrix, distance, clusterAlg){
a = ConsensusClusterPlus(
matrix,
maxK=7,
reps=1000,
pItem=0.8,
pFeature=1,
distance=distance,
clusterAlg=clusterAlg,
title=paste(distance, clusterAlg, sep='_'),
plot='pdf'
)
return(a)
}
library(DESeq2)
createList <- function(group=NULL) {
tumorsam <- names(group)
sampleList = list()
treatsamList =list()
treatnameList <- c()
ctrlnameList <- c()
if(length(table(group)) >= 2){
#A-1: 类1 vs 其他
sampleList[[1]] = tumorsam
treatsamList[[1]] = intersect(tumorsam, names(group[group=='C1'])) # 亚型名称需要根据情况修改
treatnameList[1] <- 'C1' # 该亚型的命名
ctrlnameList[1] <- "Others" # 其他亚型的命名
#A-2: 类2 vs 其他
sampleList[[2]] = tumorsam
treatsamList[[2]] = intersect(tumorsam, names(group[group=='C2']))
treatnameList[2] <- 'C2'
ctrlnameList[2] <- "Others"}
if(length(table(group)) >= 3){
#A-3: 类3 vs 其他
sampleList[[3]] = tumorsam
treatsamList[[3]] = intersect(tumorsam, names(group[group=='C3']))
treatnameList[3] <- 'C3'
ctrlnameList[3] <- "Others"
}
if(length(table(group)) == 4){
sampleList[[4]] = tumorsam
treatsamList[[4]] = intersect(tumorsam, names(group[group=='C4']))
treatnameList[4] <- 'C4'
ctrlnameList[4] <- "Others"}
#如果有更多类,按以上规律继续写
return(list(sampleList, treatsamList, treatnameList, ctrlnameList))
}
# 配对DESeq2
twoclassDESeq2 <- function(res.path=NULL, countsTable=NULL, prefix=NULL, complist=NULL, overwt=FALSE) {
sampleList <- complist[[1]]
treatsamList <- complist[[2]]
treatnameList <- complist[[3]]
ctrlnameList <- complist[[4]]
allsamples <- colnames(countsTable)
options(warn=1)
for (k in 1:length(sampleList)) { # 循环读取每一次比较的内容
samples <- sampleList[[k]]
treatsam <- treatsamList[[k]]
treatname <- treatnameList[k]
ctrlname <- ctrlnameList[k]
compname <- paste(treatname, "_vs_", ctrlname, sep="") # 生成最终文件名
tmp = rep("others", times=length(allsamples))
names(tmp) <- allsamples
tmp[samples]="control"
tmp[treatsam]="treatment"
outfile <- file.path( res.path, paste(prefix, "_deseq2_test_result.", compname, ".txt", sep="") )
if (file.exists(outfile) & (overwt==FALSE)) { # 因为差异表达分析较慢,因此如果文件存在,在不覆盖的情况下(overwt=F)不再次计算差异表达
cat(k, ":", compname, "exists and skipped;\n")
next
}
saminfo <- data.frame("Type"=tmp[samples],"SampleID"=samples,stringsAsFactors = F)
cts <- countsTable[,samples]
coldata <- saminfo[samples,]
# 差异表达过程,具体参数细节及输出结果解释,请参阅相关document
dds <- DESeqDataSetFromMatrix(countData = cts,
colData = coldata,
design = as.formula("~ Type")) # 设计矩阵仅包含亚型信息,若有批次效应请修改
dds$Type <- relevel(dds$Type,ref = "control")
dds <- DESeq(dds)
res <- results(dds, contrast=c("Type","treatment","control"))
resData <- as.data.frame(res[order(res$padj),])
resData$id <- rownames(resData)
resData <- resData[,c("id","baseMean","log2FoldChange","lfcSE","stat","pvalue","padj")]
colnames(resData) <- c("id","baseMean","log2FC","lfcSE","stat","PValue","FDR")
#输出到文件
write.table(resData, file=outfile, row.names=F, col.names=T, sep="\t", quote=F)
cat(k, ",")
}
options(warn=0)
}
subtype_specific_gsea <- function(msigdb=NULL,n.top=10,mode=c("up","down"),degs.list=NULL,subtype.label=NULL,nPerm.gsea=1000,minGSSize.gsea=10,maxGSSize.gsea=500,pvalueCutoff.gsea=1){
MSigDB <- read.gmt(msigdb)
GSEA.list <- top.gs <- list() #初始化结果列表
if(!is.element(mode, c("up", "dn"))) { stop("mode must be up or dn!\n") }
for (i in 1:n.sub) {
degs <- degs.list[[n.sub.label[i]]]
geneList <- degs$log2FC; names(geneList) <- rownames(degs)
geneList <- sort(geneList,decreasing = T) # ranked gene set
# 由于GSEA不可重复,所以保存GSEA对象入列表,方便下次调用
cat(paste0("GSEA for ",subtype.label[i]," starts!\n"))
GSEA.list[[subtype.label[i]]] <- GSEA(geneList = geneList,
TERM2GENE=MSigDB,
nPerm = nPerm.gsea,
minGSSize = minGSSize.gsea,
maxGSSize = maxGSSize.gsea,
seed = T,
verbose = F,
pvalueCutoff = pvalueCutoff.gsea) # 输出全部的GESA结果
GSEA.dat <- as.data.frame(GSEA.list[[subtype.label[i]]])
if(mode == "up") {
GSEA.dat <- GSEA.dat[order(GSEA.dat$NES,decreasing = T),] # 根据NES降序排列,也就是找特异性上调通路
} else {
GSEA.dat <- GSEA.dat[order(GSEA.dat$NES,decreasing = F),] # 根据NES升序排列,也就是找特异性下调通路
}
# 输出每一次GSEA结果
write.table(GSEA.dat,paste0(subtype.label[[i]],"_degs_",mode,"_gsea.txt"),sep = "\t",row.names = T,col.names = NA,quote = F)
# 亚型特异性top基因集保存入列表
top.gs[[subtype.label[i]]] <- rownames(GSEA.dat)[1:n.top]
}
# 构建GSVA分析需要的gene list
gs <- list()
for (i in as.character(unlist(top.gs))) {
gs[[i]] <- MSigDB[which(MSigDB$ont %in% i),"gene"]
}
return(list(mode=mode,top.gs=top.gs,gs=gs))
}
Coxoutput <- function(subt = NULL, mat = NULL){
realdata <- data.frame(row.names = rownames(subt),
Days = subt$OS_Time,
State = subt$OS_Status,
mat)
Coxoutput=data.frame()
for(i in colnames(realdata[,3:ncol(realdata)])){
cox <- coxph(Surv(Days, State) ~ realdata[,i], data = realdata)
pred.dat <- predict(cox, realdata)
dat <- data.frame(realdata[1:2], exp = pred.dat)
coxSummary = summary(cox)
Coxoutput=rbind(Coxoutput,cbind(gene=i,HR=coxSummary$coefficients[,"exp(coef)"],
z=coxSummary$coefficients[,"z"],
pvalue=coxSummary$coefficients[,"Pr(>|z|)"],
lower=coxSummary$conf.int[,3],
upper=coxSummary$conf.int[,4]))
}
for(i in c(2:6)){
Coxoutput[,i] <- as.numeric(as.vector(Coxoutput[,i]))
}
write.csv(Coxoutput, paste(getwd(), 'Coxoutput.csv' ,sep = '/'))
Coxoutput <- arrange(Coxoutput,pvalue) %>% #按照p值排序
filter(pvalue < 0.05)
return(Coxoutput$gene)
}
if(!require(tidyverse)) install.packages("tidyverse")
if(!require(readxl)) install.packages("readxl")
if(!require(VIM)) install.packages("VIM")
if(!require(randomForest)) install.packages("randomForest")
if(!require(magrittr )) install.packages("magrittr ")
if(!require(caret)) install.packages("caret")
if(!require(e1071)) install.packages("e1071")
if(!require(pROC)) install.packages("pROC")
if(!require(PerformanceAnalytics)) install.packages("PerformanceAnalytics")
if(!require(DT)) install.packages("DT")
if(!require(partykit)) install.packages("partykit")
if(!require(class)) install.packages("class")
if(!require(neuralnet)) install.packages("neuralnet")