forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmedianOfTwoSortedArrays.cpp
180 lines (140 loc) · 5.82 KB
/
medianOfTwoSortedArrays.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
// Source : https://oj.leetcode.com/problems/median-of-two-sorted-arrays/
// Author : Hao Chen
// Date : 2014-07-22
/**********************************************************************************
*
* There are two sorted arrays A and B of size m and n respectively.
* Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
*
**********************************************************************************/
#include <stdio.h>
// Classical binary search algorithm, but slightly different
// if cannot find the key, return the position where can insert the key
int binarySearch(int A[], int low, int high, int key){
while(low<=high){
int mid = low + (high - low)/2;
if (key == A[mid]) return mid;
if (key > A[mid]){
low = mid + 1;
}else {
high = mid -1;
}
}
return low;
}
//Notes:
// I feel the following methods is quite complicated, it should have a better high clear and readable solution
double findMedianSortedArrayHelper(int A[], int m, int B[], int n, int lowA, int highA, int lowB, int highB) {
// Take the A[middle], search its position in B array
int mid = lowA + (highA - lowA)/2;
int pos = binarySearch(B, lowB, highB, A[mid]);
int num = mid + pos;
// If the A[middle] in B is B's middle place, then we can have the result
if (num == (m+n)/2){
// If two arrays total length is odd, just simply return the A[mid]
// Why not return the B[pos] instead ?
// suppose A={ 1,3,5 } B={ 2,4 }, then mid=1, pos=1
// suppose A={ 3,5 } B={1,2,4}, then mid=0, pos=2
// suppose A={ 1,3,4,5 } B={2}, then mid=1, pos=1
// You can see, the `pos` is the place A[mid] can be inserted, so return A[mid]
if ((m+n)%2==1){
return A[mid];
}
// If tow arrys total length is even, then we have to find the next one.
int next;
// If both `mid` and `pos` are not the first postion.
// Then, find max(A[mid-1], B[pos-1]).
// Because the `mid` is the second middle number, we need to find the first middle number
// Be careful about the edge case
if (mid>0 && pos>0){
next = A[mid-1]>B[pos-1] ? A[mid-1] : B[pos-1];
}else if(pos>0){
next = B[pos-1];
}else if(mid>0){
next = A[mid-1];
}
return (A[mid] + next)/2.0;
}
// if A[mid] is in the left middle place of the whole two arrays
//
// A(len=16) B(len=10)
// [................] [...........]
// ^ ^
// mid=7 pos=1
//
// move the `low` pointer to the "middle" position, do next iteration.
if (num < (m+n)/2){
lowA = mid + 1;
lowB = pos;
if ( highA - lowA > highB - lowB ) {
return findMedianSortedArrayHelper(A, m, B, n, lowA, highA, lowB, highB);
}
return findMedianSortedArrayHelper(B, n, A, m, lowB, highB, lowA, highA);
}
// if A[mid] is in the right middle place of the whole two arrays
if (num > (m+n)/2) {
highA = mid - 1;
highB = pos-1;
if ( highA - lowA > highB - lowB ) {
return findMedianSortedArrayHelper(A, m, B, n, lowA, highA, lowB, highB);
}
return findMedianSortedArrayHelper(B, n, A, m, lowB, highB, lowA, highA);
}
}
double findMedianSortedArrays(int A[], int m, int B[], int n) {
//checking the edge cases
if ( m==0 && n==0 ) return 0.0;
//if the length of array is odd, return the middle one
//if the length of array is even, return the average of the middle two numbers
if ( m==0 ) return n%2==1 ? B[n/2] : (B[n/2-1] + B[n/2])/2.0;
if ( n==0 ) return m%2==1 ? A[m/2] : (A[m/2-1] + A[m/2])/2.0;
//let the longer array be A, and the shoter array be B
if ( m > n ){
return findMedianSortedArrayHelper(A, m, B, n, 0, m-1, 0, n-1);
}
return findMedianSortedArrayHelper(B, n, A, m, 0, n-1, 0, m-1);
}
int main()
{
int r1[] = {1};
int r2[] = {2};
int n1 = sizeof(r1)/sizeof(r1[0]);
int n2 = sizeof(r2)/sizeof(r2[0]);
printf("Median is 1.5 = %f\n", findMedianSortedArrays(r1, n1, r2, n2));
int ar1[] = {1, 12, 15, 26, 38};
int ar2[] = {2, 13, 17, 30, 45, 50};
n1 = sizeof(ar1)/sizeof(ar1[0]);
n2 = sizeof(ar2)/sizeof(ar2[0]);
printf("Median is 17 = %f\n", findMedianSortedArrays(ar1, n1, ar2, n2));
int ar11[] = {1, 12, 15, 26, 38};
int ar21[] = {2, 13, 17, 30, 45 };
n1 = sizeof(ar11)/sizeof(ar11[0]);
n2 = sizeof(ar21)/sizeof(ar21[0]);
printf("Median is 16 = %f\n", findMedianSortedArrays(ar11, n1, ar21, n2));
int a1[] = {1, 2, 5, 6, 8 };
int a2[] = {13, 17, 30, 45, 50};
n1 = sizeof(a1)/sizeof(a1[0]);
n2 = sizeof(a2)/sizeof(a2[0]);
printf("Median is 10.5 = %f\n", findMedianSortedArrays(a1, n1, a2, n2));
int a10[] = {1, 2, 5, 6, 8, 9, 10 };
int a20[] = {13, 17, 30, 45, 50};
n1 = sizeof(a10)/sizeof(a10[0]);
n2 = sizeof(a20)/sizeof(a20[0]);
printf("Median is 9.5 = %f\n", findMedianSortedArrays(a10, n1, a20, n2));
int a11[] = {1, 2, 5, 6, 8, 9 };
int a21[] = {13, 17, 30, 45, 50};
n1 = sizeof(a11)/sizeof(a11[0]);
n2 = sizeof(a21)/sizeof(a21[0]);
printf("Median is 9 = %f\n", findMedianSortedArrays(a11, n1, a21, n2));
int a12[] = {1, 2, 5, 6, 8 };
int a22[] = {11, 13, 17, 30, 45, 50};
n1 = sizeof(a12)/sizeof(a12[0]);
n2 = sizeof(a22)/sizeof(a22[0]);
printf("Median is 11 = %f\n", findMedianSortedArrays(a12, n1, a22, n2));
int b1[] = {1 };
int b2[] = {2,3,4};
n1 = sizeof(b1)/sizeof(b1[0]);
n2 = sizeof(b2)/sizeof(b2[0]);
printf("Median is 2.5 = %f\n", findMedianSortedArrays(b1, n1, b2, n2));
return 0;
}