Skip to content

Latest commit

 

History

History
85 lines (71 loc) · 4.79 KB

README.md

File metadata and controls

85 lines (71 loc) · 4.79 KB

AutoDL Challenge 1'st Solution

1st solution for AutoDL Challenge@NeurIPS, competition rules can be found at AutoDL Competition.

Task

Generic algorithms for multi-label classification problems in different modalities : image, video, speech, text and tabular data.

Public Datasets

Optional: Download public datasets

python download_public_datasets.py

Public datasets sample info

# Name Type Domain Size Source Data (w/o test labels) Test labels
1 Munster Image HWR 18 MB MNIST munster.data munster.solution
2 City Image Objects 128 MB Cifar-10 city.data city.solution
3 Chucky Image Objects 128 MB Cifar-100 chucky.data chucky.solution
4 Pedro Image People 377 MB PA-100K pedro.data pedro.solution
5 Decal Image Aerial 73 MB NWPU VHR-10 decal.data decal.solution
6 Hammer Image Medical 111 MB Ham10000 hammer.data hammer.solution
7 Kreatur Video Action 469 MB KTH kreatur.data kreatur.solution
8 Kreatur3 Video Action 588 MB KTH kreatur3.data kreatur3.solution
9 Kraut Video Action 1.9 GB KTH kraut.data kraut.solution
10 Katze Video Action 1.9 GB KTH katze.data katze.solution
11 data01 Speech Speaker 1.8 GB -- data01.data data01.solution
12 data02 Speech Emotion 53 MB -- data02.data data02.solution
13 data03 Speech Accent 1.8 GB -- data03.data data03.solution
14 data04 Speech Genre 469 MB -- data04.data data04.solution
15 data05 Speech Language 208 MB -- data05.data data05.solution
16 O1 Text Comments 828 KB -- O1.data O1.solution
17 O2 Text Emotion 25 MB -- O2.data O2.solution
18 O3 Text News 88 MB -- O3.data O3.solution
19 O4 Text Spam 87 MB -- O4.data O4.solution
20 O5 Text News 14 MB -- O5.data O5.solution
21 Adult Tabular Census 2 MB Adult adult.data adult.solution
22 Dilbert Tabular -- 162 MB -- dilbert.data dilbert.solution
23 Digits Tabular HWR 137 MB MNIST digits.data digits.solution
24 Madeline Tabular -- 2.6 MB -- madeline.data madeline.solution

Usage for local development and testing

  1. Git clone the repo
cd <path_to_your_directory>
git clone https://github.com/DeepWisdom/AutoDL.git
  1. Prepare pretrained models. Download model speech_model.h5 and put it to AutoDL_sample_code_submission/at_speech/pretrained_models/ directory.

  2. Optional: run in the exact same environment as on the challenge platform with docker.

    • CPU
    cd path/to/autodl_starting_kit_stable/
    docker run -it -v "$(pwd):/app/codalab" -p 8888:8888 evariste/autodl:cpu-latest
    
    • GPU
    nvidia-docker run -it -v "$(pwd):/app/codalab" -p 8888:8888 evariste/autodl:gpu-latest
    
  3. Prepare sample datasets, using the toy data in AutoDL_sample_data or download new datasets.

  4. Run local test

python run_local_test.py

The full usage is

python run_local_test.py -dataset_dir='AutoDL_sample_data/miniciao' -code_dir='AutoDL_sample_code_submission'

Then you can view the real-time feedback with a learning curve by opening the HTML page in AutoDL_scoring_output/.

Details can be seen in AutoDL Challenge official starting_kit.

Contact us

img

License

Apache License 2.0