-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathexample.py
29 lines (21 loc) · 1.3 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#!/usr/bin/env python
from python_speech_features import mfcc
from python_speech_features import delta
from python_speech_features import logfbank
import scipy.io.wavfile as wav
(rate,sig) = wav.read("english.wav")
# note that generally nfilt=40 is used for speech recognition
fbank_feat = logfbank(sig,nfilt=23,lowfreq=20,dither=0,wintype='povey')
# the computed fbank coefficents of english.wav with dimension [110,23]
# [ 12.2865 12.6906 13.1765 15.714 16.064 15.7553 16.5746 16.9205 16.6472 16.1302 16.4576 16.7326 16.8864 17.7215 18.88 19.1377 19.1495 18.6683 18.3886 20.3506 20.2772 18.8248 18.1899
# 11.9198 13.146 14.7215 15.8642 17.4288 16.394 16.8238 16.1095 16.4297 16.6331 16.3163 16.5093 17.4981 18.3429 19.6555 19.6263 19.8435 19.0534 19.001 20.0287 19.7707 19.5852 19.1112
# ...
# ...
# the same with that using kaldi commands: compute-fbank-feats --dither=0.0
mfcc_feat = mfcc(sig,dither=0,useEnergy=True,wintype='povey')
# the computed mfcc coefficents of english.wav with dimension [110,13]
# [ 17.1337 -23.3651 -7.41751 -7.73686 -21.3682 -8.93884 -3.70843 4.68346 -16.0676 12.782 -7.24054 8.25089 10.7292
# 17.1692 -23.3028 -5.61872 -4.0075 -23.287 -20.6101 -5.51584 -6.15273 -14.4333 8.13052 -0.0345329 2.06274 -0.564298
# ...
# ...
# the same with that using kaldi commands: compute-mfcc-feats --dither=0.0