-
Notifications
You must be signed in to change notification settings - Fork 0
/
Eden Model3.nb
1451 lines (1394 loc) · 65.9 KB
/
Eden Model3.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 67345, 1443]
NotebookOptionsPosition[ 63327, 1372]
NotebookOutlinePosition[ 63680, 1388]
CellTagsIndexPosition[ 63637, 1385]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[TextData[{
"Physics 234 \nPS#7(B)\n",
StyleBox["Eden Model: Border versus Area",
FontSize->36]
}], "Title",
CellChangeTimes->{{3.731933741464285*^9, 3.731933811667729*^9}, {
3.733086138314348*^9, 3.7330861788780413`*^9},
3.733089827843464*^9},ExpressionUUID->"85195c64-ff33-4114-a87a-\
a9010ca7b809"],
Cell[TextData[StyleBox["Ziyang Gao\n4/18/2018",
FontSize->18]], "Text",
CellChangeTimes->{{3.731933819521956*^9, 3.731933824538842*^9}, {
3.731939225488948*^9, 3.7319392305278673`*^9}, {3.733088578727078*^9,
3.733088579284164*^9}},ExpressionUUID->"86359b0a-b589-4503-9eb5-\
108325cb14df"],
Cell[CellGroupData[{
Cell["Section 1: What is the problem about", "Section",
CellChangeTimes->{{3.731933877737628*^9, 3.731933884921731*^9}, {
3.731934100769842*^9, 3.7319341152049837`*^9}, {3.7319341676901703`*^9,
3.731934206224195*^9}, {3.7319396024353*^9, 3.7319396027873163`*^9}, {
3.7330864596273613`*^9,
3.733086466532071*^9}},ExpressionUUID->"1edb1033-a6e1-4fa3-ad7b-\
5420781109d7"],
Cell[TextData[{
StyleBox["This problem is about investigating the Eden Model and trying to \
determine how the number of sites b in the border of the cluster depends on \
the number of sites n in the cluster itself. In particular, you will assume \
that b = ",
FontSize->18],
Cell[BoxData[
FormBox[
SuperscriptBox["cn", "d"], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"21d07a39-c4f8-4103-bb89-7700087fa275"],
StyleBox[", and then estimate the best values and uncertainties for log[c] \
and d.",
FontSize->18]
}], "Text",
CellChangeTimes->{{3.731934230992525*^9, 3.731934244038454*^9}, {
3.731934291164131*^9, 3.731934299507243*^9}, {3.7319343516085052`*^9,
3.73193435360321*^9}, {3.73193440429664*^9, 3.731934488422429*^9}, {
3.731935615701275*^9, 3.731935618086338*^9}, {3.7319391777147427`*^9,
3.7319392070884123`*^9}, {3.733086212566287*^9, 3.733086219183638*^9}, {
3.733086323993503*^9, 3.7330864097420692`*^9}},
FontSize->16,ExpressionUUID->"55f552d6-f60d-4ae1-87f7-0e6182d7e3b8"]
}, Open ]],
Cell[CellGroupData[{
Cell["Section 2: Statistical functions", "Section",
CellChangeTimes->{{3.731935483103862*^9, 3.731935498483976*^9}, {
3.731935551408482*^9, 3.731935582598387*^9}, {3.73308646927219*^9,
3.733086473055293*^9}},ExpressionUUID->"6321a316-d982-43cb-ade7-\
005963018270"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"ave", "[", "myList_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"Total", "[", "myList", "]"}], "/",
RowBox[{"Length", "[", "myList", "]"}]}], "//", "N"}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"aveSqr", "[", "myList_", "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"Total", "[",
RowBox[{"myList", "^", "2"}], "]"}], "/",
RowBox[{"Length", "[", "myList", "]"}]}], "//", "N"}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"var", "[", "myList_", "]"}], ":=",
RowBox[{
RowBox[{"aveSqr", "[", "myList", "]"}], "-",
RowBox[{
RowBox[{"ave", "[", "myList", "]"}], "^", "2"}]}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"unc", "[", "myList_", "]"}], ":=",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"var", "[", "myList", "]"}], "/",
RowBox[{"Length", "[", "myList", "]"}]}], "]"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.731935592727912*^9, 3.731935609122292*^9}, {
3.731935825100363*^9, 3.7319358338529053`*^9}, {3.7319361293425293`*^9,
3.731936130006646*^9}, 3.7319367009544573`*^9, {3.731937088503779*^9,
3.731937096008078*^9}, {3.731939458631688*^9, 3.731939463061267*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"3bbda714-492a-4fe1-8df7-db5ffe10d8b9"]
}, Open ]],
Cell[CellGroupData[{
Cell["Section 3: Develop a module for generating sizeList", "Section",
CellChangeTimes->{{3.731939470272645*^9, 3.731939478755679*^9}, {
3.7319395843885317`*^9, 3.731939597387458*^9}, {3.7319400104232397`*^9,
3.731940018718193*^9}, {3.7319443041699667`*^9, 3.7319443055850058`*^9}, {
3.731949509578136*^9, 3.731949509808877*^9}, {3.733088547548583*^9,
3.733088553676586*^9}},ExpressionUUID->"ce4933f2-ddb0-4f71-8bef-\
474910771fdc"],
Cell[TextData[StyleBox["Code for a single growth:",
FontSize->18]], "Text",
CellChangeTimes->{{3.733089589318679*^9,
3.733089611617515*^9}},ExpressionUUID->"6b636ed0-e61f-4337-aac0-\
cef00ab98cdc"],
Cell[BoxData[{
RowBox[{"Clear", "[", "growCells", "]"}], "\n",
RowBox[{
RowBox[{
RowBox[{"growCells", "[", "oldCells_", "]"}], ":=", "\[IndentingNewLine]",
RowBox[{"Module", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
"choices", ",", "oldCluster", ",", "oldBorder", ",", "newSite", ",",
"nnNewSite", ",", "tempBorder", ",", "newBorder", ",", "newCluster",
",", "newCells"}], "}"}], ",", "\n", "\t", "\[IndentingNewLine]",
RowBox[{
RowBox[{"choices", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "1"}]}], "}"}]}], "}"}]}], ";", "\[IndentingNewLine]",
RowBox[{"oldCluster", "=",
RowBox[{"oldCells", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"oldBorder", "=",
RowBox[{"oldCells", "[",
RowBox[{"[", "2", "]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"newSite", "=",
RowBox[{"oldBorder", "[",
RowBox[{"[",
RowBox[{"RandomInteger", "[",
RowBox[{"{",
RowBox[{"1", ",",
RowBox[{"Length", "[", "oldBorder", "]"}]}], "}"}], "]"}], "]"}],
"]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"newCluster", "=",
RowBox[{"Join", "[",
RowBox[{"oldCluster", ",",
RowBox[{"{", "newSite", "}"}]}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"nnNewSite", "=",
RowBox[{"Map", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"#", "+", "newSite"}], ")"}], "&"}], ",", "choices"}],
"]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"tempBorder", "=",
RowBox[{"Union", "[",
RowBox[{"oldBorder", ",", "nnNewSite"}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"newBorder", "=",
RowBox[{"Complement", "[",
RowBox[{"tempBorder", ",", "newCluster"}], "]"}]}], ";",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"newCells", "=",
RowBox[{"{",
RowBox[{"newCluster", ",", "newBorder"}], "}"}]}]}]}], "\t\t",
"\[IndentingNewLine]", "]"}]}], ";"}]}], "Input",
CellLabel->"In[9]:=",ExpressionUUID->"bb2cb4ff-ddf0-4802-8204-723e0026ab61"],
Cell[TextData[StyleBox["A for-loop generating sizeList of 1000 times of \
growth:",
FontSize->18]], "Text",
CellChangeTimes->{{3.7330896244824953`*^9, 3.733089647764377*^9}, {
3.733089682888604*^9, 3.7330896831314363`*^9}, {3.7331596246666307`*^9,
3.733159646776009*^9}},ExpressionUUID->"7576c3bd-d677-4713-a486-\
022e4abb4449"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"oldCells", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "1"}]}], "}"}]}], "}"}]}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sizeList", " ", "=", " ",
RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"For", "[",
RowBox[{
RowBox[{"i", "=", "1"}], ",",
RowBox[{"i", "\[LessEqual]", "1000"}], ",",
RowBox[{"i", "++"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"newPic", "=",
RowBox[{"growCells", "[", "oldCells", "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"clusterArea", " ", "=", " ",
RowBox[{"Length", "[",
RowBox[{"newPic", "[",
RowBox[{"[", "1", "]"}], "]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"borderArea", " ", "=", " ",
RowBox[{"Length", "[",
RowBox[{"newPic", "[",
RowBox[{"[", "2", "]"}], "]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"AppendTo", "[",
RowBox[{"sizeList", ",",
RowBox[{"{",
RowBox[{"clusterArea", ",", "borderArea"}], "}"}]}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"oldCells", "=", " ",
RowBox[{"{",
RowBox[{
RowBox[{"newPic", "[",
RowBox[{"[", "1", "]"}], "]"}], ",",
RowBox[{"newPic", "[",
RowBox[{"[", "2", "]"}], "]"}]}], "}"}]}], ";"}]}],
"\[IndentingNewLine]", "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"plot1", "=",
RowBox[{"ListPlot", "[",
RowBox[{"sizeList", ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Blue", "[",
RowBox[{"1", ",", "0", ",", "0"}], "]"}], ",",
RowBox[{"PointSize", "[", "0.01", "]"}]}], "}"}]}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<n\>\"", ",", "\"\<b\>\""}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"PlotLabel", "\[Rule]",
RowBox[{"Style", "[",
RowBox[{"\"\<cluster size n versus bordering b\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Helvetica\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}], ",",
RowBox[{"FontWeight", "\[Rule]", "\"\<Bold\>\""}]}], "]"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"ImageSize", "\[Rule]", "500"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"model", "=",
RowBox[{"LinearModelFit", "[",
RowBox[{"sizeList", ",", "x", ",", "x"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"plot2", " ", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"model", "[", "\"\<BestFit\>\"", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "2", ",", "1000"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"plot1", ",", "plot2"}], "]"}], "\[IndentingNewLine]",
RowBox[{"model", "[", "\"\<ParameterTable\>\"", "]"}], "\[IndentingNewLine]",
RowBox[{"model", "[", "\"\<BestFit\>\"", "]"}], "\[IndentingNewLine]",
RowBox[{"model", "[", "\"\<ParameterErrors\>\"", "]"}]}], "Input",
CellChangeTimes->{{3.733089487731042*^9, 3.7330895068450003`*^9}, {
3.733089712326661*^9, 3.733089773033499*^9}, {3.73308984984695*^9,
3.733089857553776*^9}, {3.733089976835205*^9, 3.7330900839813128`*^9}, {
3.733090191850224*^9, 3.73309034019281*^9}, {3.733090376325292*^9,
3.733090390667686*^9}, {3.733091018487739*^9, 3.733091056932004*^9}, {
3.733091099089858*^9, 3.7330911255347548`*^9}, 3.733091206108118*^9, {
3.733091274859486*^9, 3.733091276546442*^9}, {3.733091391954361*^9,
3.733091459545443*^9}, 3.73309199381398*^9, {3.733092070017365*^9,
3.7330921384838123`*^9}, {3.733095293151875*^9, 3.733095308791675*^9}, {
3.733095434603629*^9, 3.733095461697607*^9}, {3.733095512707172*^9,
3.733095585486483*^9}, {3.733095644477758*^9, 3.733095689486764*^9}, {
3.733095834288021*^9, 3.733095834955641*^9}, 3.733095865432475*^9, {
3.733095908857945*^9, 3.7330959093796043`*^9}, {3.733095955014286*^9,
3.733095956491598*^9}, {3.733096059198093*^9, 3.733096063718175*^9}, {
3.733096096564747*^9, 3.733096157665468*^9}, {3.733096190390738*^9,
3.733096200430606*^9}, {3.733096232670431*^9, 3.733096241114482*^9}, {
3.733096273486993*^9, 3.733096275014914*^9}, {3.733097221174057*^9,
3.7330972563354*^9}, {3.7330986980681467`*^9, 3.733098705416177*^9}, {
3.733143484269719*^9, 3.733143495534583*^9}},
CellLabel->"In[7]:=",ExpressionUUID->"4b583e35-7abc-41dd-93e0-59ffdd045f7e"],
Cell[BoxData[
FormBox[
GraphicsBox[{{{}, {{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.01],
AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJx12zuw61YVxvE90LhUQeGCQjAM48kwjHib94a8HJ4iEOIkQJQX8c0luUrC
TZwH3J0XcZILUXlKlS5VnlKlS5UuVbpU6ZJh+JaZ9Z8hjeY331p7b8n2key7
84Wnbz383GdCCKfPhvCfo/6L/z3MdZzp+HkdMx1zHT+n4xfR92X0LdB3D/rM
X9LxKxjHvIDvge34VRwLHL+G49f/z/EbqPsm8m+h7tvwd+Al+r6Lcb+H/PsY
9wcY54fwjzDujzFO9OMks43zEz9OgsNPkZttnHu9072Y5z7k9yG/368j3Y91
PID8AfQ/6OvTgzivFfIVzush7/QQ5v8Z+s3W/3Md7bxluw7hFzraect2HcIv
ZTtvOPwKORx+jRwOpXeU7boms65bb/V2HX8j67pFOMl2HXs4POwdH0Y/3KM+
/Fa59cMJ7uHwO/TDSbbXuUceHsH6H8H6Lbf1W27X7/feUb68by3X69HD4VFf
Hx/14yW4t3p7n6+x/rU/vwT3qA+PKbfXH06P+foeeXgc/Y/79SWz9cPhCfTD
6Qk/Xo88/MGPF+XL+Vtur7/ZPtd/VJ0cZftcJ8vl3nJ9jsOfvKN8+Zwj7+Hw
pK+PT/o8WW7zw6Hy9XmF8SzX35XKcvs7A7eo7zHeiDw85Z0/hfmRV3BCfWu5
XS/kIxyexvxP+/OJyCuz/R2FW7iHR4wfnpGV53CEq2cwP9zCvfVrvhF5eNY7
h+OzmN9yuw/ALdzLdl8Z4fCc6uRctvtKhCvUJ9nuOy3cy3YfGq3f7kN/1lH3
lRyOst2XKvlyX4Jb2e5TPTzC4XkddV/K4fi8r6+QJ9nuey3yHv3j8369YeOd
b3x93PjxKjhZv80P9xu/vhH94YafL7/h83jD91c3/PjJ+m1+uLfxdN8ebTy7
r7/g8/wF3x/hCk7ob+Ee9SMcbvrzyW/6843IKzjdxPw3/fg98tH67fz/4p3L
9pwTkVdwku05qIV72Z6LRji8qHHk/EWfR9memyrUJ7hFfw+PqA8v+Tx/yefx
JcwvX57brF9u4d7Gk0c43PLOb/n+eMvPV8EJbm/59fbIR4wfaj9/JttzZQ4X
sj1nRrhEfWXjyzXqE/JGtufU1ur13NlZvdzDAzzCk63Pnktf1jjKs5d9nsv2
XFvA0frlEq7g2sa3517ZnnMby/Wc2sKdzS/38GDjyaPNL082nj3HvuLz7BWf
53ABR7iU7bm5slzPvbVsz8kJeWP9cmu5nns7W6/yHvUD8hGeUB9e9c5e9fX5
q37+Qrbn9Gj9com8Ql4jT3CD+hZ5h7y39coDPNr69dw/2Xj2PeGv3hmcw4Vs
3yuibN8jStm+Z1TIazjJ9r2jgVu4Q3+PfIBH1E9YX7jtnd3255fLl/NHHtFf
Iq+Q17f9ehLc2Hx2/rf9+XSyfQ/rUT+gfkQ+oT+8pnXI2Ws+z1/z/QUc4RLj
VbJ9L6zly/dC2b4XNrJ9L2yRd3CP8QZ4RP2EPLzu15fB+ev+fAo4or5EXsE1
6hPyBm5lez062a53L1/e/7K9n0bkE/rD1o+fbX2eIy/gCJfor7Z+/nrr15dQ
36C+RX0H9+gf0D8in+Dwhq/P4PwNX1/AUb6cP1zBtXz53US290Mj2/uzRd6h
v8f4A/IR/RPGD296Z3AOF3CES7iCazi96dfXvOnX3yLv4B4e0D/Kdn0m5OEt
7wzO4QKOb/nxS7iCa/Qn5A3cvuXPr5Pt+vXIB9n+3o2y/T2dkIe3fZ7B+du+
voDj2349JVyhvkaekDeYv0XeIe/hQbbfEUd4gsPftE47f9l+V8xl+12xkO13
xSjb74qlbL8rVnANJ/Q3GL/F/B3W12P9AzzCExz+7p3J9rtrDhdwhEvZrm+F
vIYT5m+Qt8g75D08YP4RnuTL7853vDM4v+P7izt+vgiXcAXXcLrjz69B3mL+
DuvrZft8DPLl+Ue+/P2HQ/L1s+THy5Kfb578enLkC/QX8BLzRXgFl8mvd43x
KniD/hr9W+QJ/TvkDfIr5C28x3wd8muM18MHeMD1PSIfkZ+QT5j/jDy84/tn
cPaOr58jz+EFXKB/iTzCK/nyeYLXsn1eKuQb5DXyLZxkez/vsJ4G9VcYv5Xt
7/EeeYf+a7jH/AfMP6D+iPoR9SfkE/Iz8vCuH3/2rl9/9q4/vznyHP0L1Bey
3b+WyCO8Qn0p2/1wLdv9soI3cA1v4QTvZLs/N3IuX8GtXMl7uJOTfI28hw/w
ILfyER7hE+ab4DPGD+/5fAZn7/n6OZyjfgEX8BL9EfnqPX8+JfI1+it4I0e5
hrcYL6F/Bzfov4JbeA938DXG75EfkA/wER7hEzzBZzi87+efyZfXX7bXY448
hxfv+/ELeIn5omyfpxVcon+N+SqsbyOPcm3j6d+9tza//bu4jS/vkDfIr2x+
uUW+R97B17L9u3xv65cPyAfkR+Qj8hPyCfkZefhA48gzOIPnH/j+HF7Itq+g
gJcYLyJfwaVs+xLWsu1LqJBv0F9jvi3qE8bbIW/gK7hF/x55h/wa7mXbV3GQ
bV/FAB9l22cxwid7PeTJzl8+Iw//8PkMzuC5bPs2ctn2bSxk26dRwEvZ9nVE
eIXxSniN+Sv0b2TbF1LDW6wnoX+H+RrkV3CL8fZwh/prrKeXbZ/KAR7go52/
9pGMtl75BE/w2dZj+1w+1HrkmWz7XDJ4jvoc+eJDP36BfIk8Il/BJbyGK4y3
QV5jvVvkCf071DfwlWz7fFrZ9vnsZdvn08m2z+ca7uED+gfkR3iUbd/Qyc5H
nuCznb/tE9rp/OQZnMm2r2gO57LtM1ogL5Av4Yj6FVzCa6yvgjeor+EtnLCe
HfIGvkJ9i3yP9XSyXe9ruJft9TkgH5Af4VG+vP6yvT8m2d5PZ1u/ff4/8vkM
zj7y480/8vPlyBfoL5Av0R/hFVzCa9muTyVfXn+4Rv0WeUK+Q97Il9cfbmV7
P+zhzq6Hvf7Ie/iA+sGun/bNHeERPqF/suun/Iz68LH37GNfn8m2D3Au276/
XLZ9fwvZ9v0VyJdwxHgruET9Gq4w3wZ5jfG2su1jTMh3cIPxrpC3GG+P69Wh
/hr1PfIDPKD+iHzE+Z9k22c5IT8jD594zz7x9RnyOfJcvrz+cIH+Jfoj6lfI
S+Rr2c6/gjeyXa8a+RZ5Qr5D3sj2el4hb9G/x3o7nM813MMH9A/Ij8hHzH+C
J6z3jDzc9Z7d9fWZfPn8wzm8kO3vR4Hxlnf9+iO8uuvPt0S+xnoreIP6Gt6i
PiHfYf5GtvfvFdyifg93qL+262P7lOEDPMi2T/oIj6g/2eshT8jPcPinr5/J
tq86k21f9RzOZdtnvUBeIF/Kl33YyFdwifo18gr5Bq7hrWz7vJNs+8B3qG/g
K/S3dv3kPfIO419jvB75AR7gI8Yf4RM8ybZv/QyHf3nP4Ey2fe5z2fa55/AC
LtC/xPgRXqG+xHhr5BW8kW3ffY3+LeoT8h3yBvkV8hbe43w62d4f1/Ll/zOQ
L68/8gH5ER7hEzxhvDPy8KnGsc8/nH3q6+fIc3gBF/AS40Xkq//532Mecgs=
"]]}, {}}, {}, {}, {}, {}}, {{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVjnk4lAkAh8cRsbWVW7alZN25kvTY/Cp30hijGFRkxvCV0S6SMzmS+L5m
h6lF1tVkdklNbTZHjrbEaFJblmW3C9OmRAoda9f+8T6/5/3n97yrI3gMtiKN
RtuxwP/rc7W2Xp1GA6s9Y1kFyx3qDknPx75RhCBbkagPd0dPg6fxjVFl9Hrl
3GriumO7eOxMilQNrvfy0x4muuMrP42tidIVMH5aPK4uWPAtdGu50AAvleq6
EqTuEGiOZY4ITZHuOZCx3cUDPZ9srZ4JHVEls52cWeWJonZLzd7ohV81bq2b
qjc0JbUFisyd2EH2p5v0+UDXLZvnlMsETSxUWX7KF8395eFPpcHQmhxmTyX4
QXXLhH9K4x60o35KsoqOBPOiHDeVCJw3tCnjavqjcDx6IKgmEpzuYMNqZQaO
6LMsIrWjwNCrsDs/yoBdadtj8+ZoxKaJG0SDAWjNcxWOORxA43FZC6+VCZ7N
XIdtRSwGQsuqWssCMaOlKS6piIOZl/VbFWoXDL0a4878cQiigcEH+od2w9pE
GDO97lswM7xXm3GCcHcP31A7LR5Dk+EezbuCESLTZ0quJIBUFX7QdWKhVz7c
VKdyGIfWF66MswiBmZN15ZqtSchUqejmLw1FjO0v196dPoLOiYSRC0phcM3d
W0jJkzFU+fZ3+rsw/LOi6HGNUSqMPpCslv49qPRU4ujGp6GY+9LLWLoXNpf/
jVl0KR1fXLd/Jt69D/4pepZN8gwE128js7v2oW7m5885ZUdxwXTD62GE45yP
qKvOORMl8Vd1V0rCwZ++rL9mJBPlvnozD6wi0NWzszv55DEsy5eBcS4Cb1wk
G/mmWdAp0Qi4or0fy5Xtt/T3ZWG940aDImo/jDlJaoOx2XhRNf5jkEIkMmZ8
bdrUcvBZ4rToUVwkZEObJ367lAO3B8NBI39HQiN09oDILxdai5j377DY8La7
k31+Lhef2usUHB+ykVAZHco5fRzJOwVzRz05GHct4i92yAN7myyEauSA6TC8
d3AoD9zOF/EGdlGQdLx4FXXkBBS0igMLqqKgdE5H22RtPiSTRi+TV3Fx9mrf
9zel+bhrr/DaUsiF1X7/v4y5J5HlybvWoRKNC5Gvmy+uKICf/Lrzw6PRMFFg
Bn9sKMDF4LLMO2+iMSb1YJpvL0SGncwxLyIGJeO7nudMF4Jd9OSH9qEYbBNZ
u1ScIvG0+9i9P30JLHbWaA4TkFBn24z2+xHolc44GwhJ2NGG5+7SCTCn2pyE
pSTSNzgadTIJRLowHApEJFZWy2NFoQSy7ydaJLWQoKf6LuEdIHBrvk2P/pxE
2zodT1oBgXx+zeml4yTGujtZ7wsJ+K09oSN9RWIpmxf7hiLQ783Q8pgmEVJ6
u3hEQEBeNLLMZZ7ErGrKyO3ShT5LNVUzLQo2Tx5l8n9a6Gt9lTOqQyEwtaA4
v57AKfp95Wp9Cqm6zuKsBgJ6iaWKXxpS6NnxXV/CZQLmHdbzmhYUOE1uhqxm
AhMBGmn3rCiQgVP2Aa0EJGMzH0kbClcmz3r4thHYtKT9vZojBUXT2YObbxCY
L69J6nKiYN5Znel0k0Cn3YnZ7E0U6GH0YtsuArm/Hkzc+jWFw3Ofas27Cfjs
Zrz715VCuUDcskZK4D/81TRo
"]]},
Annotation[#, "Charting`Private`Tag$3596#1"]& ]}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"b\"", TraditionalForm], None}, {
FormBox["\"n\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->500,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotLabel->FormBox[
StyleBox[
"\"cluster size n versus bordering b\"", FontFamily -> "Helvetica",
FontSize -> 12, FontWeight -> "Bold", StripOnInput -> False],
TraditionalForm],
PlotRange->{{0, 1001.}, {0, 214.}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], TraditionalForm]], "Output",
CellChangeTimes->{{3.733092106441432*^9, 3.733092114376828*^9}, {
3.733095534079273*^9, 3.733095588293337*^9}, 3.733095691409423*^9, {
3.733095841551009*^9, 3.733095867662918*^9}, 3.733095911439714*^9,
3.73309596097033*^9, 3.733096067376163*^9, 3.7330961608936*^9,
3.73309620250974*^9, 3.733096245069832*^9, {3.733097259191615*^9,
3.733097273378603*^9}, 3.7330987083844013`*^9, 3.733143503210012*^9,
3.733146779301908*^9},
CellLabel->"Out[13]=",ExpressionUUID->"0324afda-1edc-4d40-a464-da2e10fe7b30"],
Cell[BoxData[
FormBox[
TemplateBox[{
"General","munfl",
"\"\\!\\(\\*FormBox[SuperscriptBox[\\\"0.23398677352908603`\\\", \
\\\"499.`\\\"], TraditionalForm]\\) is too small to represent as a normalized \
machine number; precision may be lost.\"",2,14,1,17856018701862124304,"Local"},
"MessageTemplate"], TraditionalForm]], "Message", "MSG",
CellChangeTimes->{3.73314350369208*^9, 3.733146779928314*^9},
CellLabel->
"During evaluation of \
In[7]:=",ExpressionUUID->"c1959979-b43b-4139-b68a-8db0e9188776"],
Cell[BoxData[
FormBox[
TemplateBox[{
"General","munfl",
"\"\\!\\(\\*FormBox[SuperscriptBox[\\\"0.04806740972032362`\\\", \
\\\"499.`\\\"], TraditionalForm]\\) is too small to represent as a normalized \
machine number; precision may be lost.\"",2,14,2,17856018701862124304,"Local"},
"MessageTemplate"], TraditionalForm]], "Message", "MSG",
CellChangeTimes->{3.73314350369208*^9, 3.733146780638442*^9},
CellLabel->
"During evaluation of \
In[7]:=",ExpressionUUID->"6cb96177-c24f-4d3e-919c-0d4fff95ea75"],
Cell[BoxData[
FormBox[
StyleBox[
TagBox[GridBox[{
{"\<\"\"\>", "\<\"Estimate\"\>", "\<\"Standard Error\"\>", "\<\"t\
\[Hyphen]Statistic\"\>", "\<\"P\[Hyphen]Value\"\>"},
{"1", "42.34800601800603`", "0.7408754698894574`",
"57.159411721816866`", "4.8582345`*^-317"},
{"x", "0.17999998799998798`", "0.0012803522451913995`",
"140.5863024616947`", "0.`"}
},
AutoDelete->False,
GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Automatic}}},
GridBoxDividers->{
"ColumnsIndexed" -> {2 -> GrayLevel[0.7]},
"RowsIndexed" -> {2 -> GrayLevel[0.7]}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings->{
"ColumnsIndexed" -> {2 -> 1}, "RowsIndexed" -> {2 -> 0.75}}],
"Grid"], "DialogStyle",
StripOnInput->False], TraditionalForm]], "Output",
CellChangeTimes->{{3.733092106441432*^9, 3.733092114376828*^9}, {
3.733095534079273*^9, 3.733095588293337*^9}, 3.733095691409423*^9, {
3.733095841551009*^9, 3.733095867662918*^9}, 3.733095911439714*^9,
3.73309596097033*^9, 3.733096067376163*^9, 3.7330961608936*^9,
3.73309620250974*^9, 3.733096245069832*^9, {3.733097259191615*^9,
3.733097273378603*^9}, 3.7330987083844013`*^9, 3.733143503210012*^9,
3.73314678066078*^9},
CellLabel->"Out[14]=",ExpressionUUID->"3f8f0b5f-18d1-4b61-b4dd-d234c4c165f8"],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"0.17999998799998798`", " ", "x"}], "+", "42.34800601800603`"}],
TraditionalForm]], "Output",
CellChangeTimes->{{3.733092106441432*^9, 3.733092114376828*^9}, {
3.733095534079273*^9, 3.733095588293337*^9}, 3.733095691409423*^9, {
3.733095841551009*^9, 3.733095867662918*^9}, 3.733095911439714*^9,
3.73309596097033*^9, 3.733096067376163*^9, 3.7330961608936*^9,
3.73309620250974*^9, 3.733096245069832*^9, {3.733097259191615*^9,
3.733097273378603*^9}, 3.7330987083844013`*^9, 3.733143503210012*^9,
3.73314678067282*^9},
CellLabel->"Out[15]=",ExpressionUUID->"baaa0e2c-ab27-48b9-ba5d-8898a66e8664"],
Cell[BoxData[
FormBox[
RowBox[{"{",
RowBox[{"0.7408754698894574`", ",", "0.0012803522451913995`"}], "}"}],
TraditionalForm]], "Output",
CellChangeTimes->{{3.733092106441432*^9, 3.733092114376828*^9}, {
3.733095534079273*^9, 3.733095588293337*^9}, 3.733095691409423*^9, {
3.733095841551009*^9, 3.733095867662918*^9}, 3.733095911439714*^9,
3.73309596097033*^9, 3.733096067376163*^9, 3.7330961608936*^9,
3.73309620250974*^9, 3.733096245069832*^9, {3.733097259191615*^9,
3.733097273378603*^9}, 3.7330987083844013`*^9, 3.733143503210012*^9,
3.733146780685544*^9},
CellLabel->"Out[16]=",ExpressionUUID->"4710d324-b22f-4de2-bcc1-ecc02da1748b"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
Section 4: Develop a module that applies Fit[] to the log of sizeList \
\>", "Section",
CellChangeTimes->{{3.731949496460588*^9, 3.7319495039435663`*^9}, {
3.733097923686881*^9, 3.733097926942137*^9}, {3.733098354130898*^9,
3.733098357166833*^9}},ExpressionUUID->"2d55c940-ef22-4a08-a275-\
638e662ddf26"],
Cell[TextData[StyleBox["In this section we will compute Log of sizeList from \
section 3 and a fitted model for logSizeList. We take out the first 50 data \
points because the power-law relationship may only hold from a large n \
values.",
FontSize->18]], "Text",
CellChangeTimes->{{3.73309841640688*^9, 3.73309844180204*^9}, {
3.733098629131445*^9, 3.733098631064431*^9}, {3.7331441435668573`*^9,
3.733144148131731*^9}, {3.733144293433251*^9, 3.7331443858658533`*^9}, {
3.733144443887145*^9, 3.733144444246665*^9}, {3.7331595200941668`*^9,
3.733159524675722*^9}, {3.733159731298893*^9,
3.7331597793343077`*^9}},ExpressionUUID->"e57a43bf-5f46-46b4-8b40-\
e7d65608f505"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"logSizeList", "=",
RowBox[{
RowBox[{"Map", "[",
RowBox[{"Log", ",", "sizeList", ",",
RowBox[{"{", "2", "}"}]}], "]"}], "//", "N"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"logSizeList", "=",
RowBox[{"Take", "[",
RowBox[{"logSizeList", ",",
RowBox[{"-", "950"}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"plot3", "=",
RowBox[{"ListPlot", "[",
RowBox[{"logSizeList", ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Blue", "[",
RowBox[{"1", ",", "0", ",", "0"}], "]"}], ",",
RowBox[{"PointSize", "[", "0.01", "]"}]}], "}"}]}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<logn\>\"", ",", "\"\<logb\>\""}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"PlotLabel", "\[Rule]",
RowBox[{"Style", "[",
RowBox[{"\"\<log(n) versus log(b)\>\"", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Helvetica\>\""}], ",",
RowBox[{"FontSize", "\[Rule]", "12"}], ",",
RowBox[{"FontWeight", "\[Rule]", "\"\<Bold\>\""}]}], "]"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"ImageSize", "\[Rule]", "500"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"model2", "=",
RowBox[{"Fit", "[",
RowBox[{"logSizeList", ",",
RowBox[{"{",
RowBox[{"1", ",", "x"}], "}"}], ",", "x"}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"plot4", " ", "=",
RowBox[{"Plot", "[",
RowBox[{"model2", ",",
RowBox[{"{",
RowBox[{"x", ",", "1", ",", "1000"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"plot3", ",", "plot4"}], "]"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.733098547137018*^9, 3.733098683030788*^9}, {
3.7330987321939707`*^9, 3.733098867631537*^9}, {3.733098932305698*^9,
3.733098935061144*^9}, {3.7330990255743103`*^9, 3.733099031003772*^9}, {
3.733099077065371*^9, 3.733099110421887*^9}, {3.733099726916074*^9,
3.73309972712746*^9}, {3.733099771008587*^9, 3.733099772761011*^9}, {
3.7330999582277803`*^9, 3.733099981402972*^9}, {3.733100041523731*^9,
3.73310005070576*^9}, {3.733100380110415*^9, 3.733100389121875*^9}, {
3.733100448618989*^9, 3.733100516430684*^9}, {3.733100670806221*^9,
3.733100692935993*^9}, {3.733100726034979*^9, 3.733100737605361*^9}, {
3.733100877515451*^9, 3.7331008995329037`*^9}, {3.733100946910185*^9,
3.7331009508181067`*^9}, {3.733100982361478*^9, 3.733101027531411*^9}, {
3.733101073685927*^9, 3.733101098265786*^9}, {3.733101204557225*^9,
3.733101258198453*^9}, {3.733101345184375*^9, 3.73310137098486*^9},
3.733101454319676*^9, {3.7331015285877743`*^9, 3.7331015311799726`*^9}, {
3.733101599765017*^9, 3.73310160074443*^9}, {3.733101679571824*^9,
3.73310168121236*^9}, {3.73310366339367*^9, 3.733103666599807*^9}, {
3.733103973565669*^9, 3.7331040487644463`*^9}, {3.7331049445729628`*^9,
3.7331049448016977`*^9}, {3.733104993101305*^9, 3.733105020773637*^9}, {
3.7331051159222307`*^9, 3.733105194038163*^9}, {3.733105348965473*^9,
3.733105350682754*^9}, {3.73314322570619*^9, 3.733143227027227*^9}, {
3.733143315114744*^9, 3.733143340828122*^9}, {3.733143393703514*^9,
3.733143410703861*^9}, {3.733143452722068*^9, 3.7331434694525957`*^9}, {
3.73314352174442*^9, 3.733143564948697*^9}, 3.733143605860244*^9,
3.733143640803145*^9, 3.733143678892907*^9, {3.733143729418879*^9,
3.7331438064128923`*^9}, {3.733146933674408*^9, 3.733146941517367*^9}, {
3.733147390307851*^9, 3.733147456606257*^9}, 3.733158189244535*^9, {
3.733158226618156*^9, 3.733158228307836*^9}},
CellLabel->"In[90]:=",ExpressionUUID->"dd862487-ead7-4dc1-bf0f-5ddc1f877be0"],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"0.5794153502287143`", " ", "x"}], "+", "1.3377405307492307`"}],
TraditionalForm]], "Output",
CellChangeTimes->{
3.733098805918116*^9, {3.733098844148878*^9, 3.733098869397148*^9},
3.733098953603833*^9, 3.733099729865653*^9, 3.733099774279573*^9,
3.7331000562684298`*^9, 3.7331003908160563`*^9, 3.7331004529560738`*^9,
3.73310050641639*^9, 3.733100698136389*^9, 3.733100739468399*^9,
3.733100953984741*^9, {3.73310100708687*^9, 3.7331010301580057`*^9}, {
3.733101075952832*^9, 3.733101098964424*^9}, {3.733101228062871*^9,
3.733101261128573*^9}, 3.733101378374453*^9, 3.7331014581368113`*^9,
3.7331015320454473`*^9, 3.7331016016958103`*^9, 3.73310168234025*^9, {
3.73310394981922*^9, 3.733103989761835*^9}, 3.733104945729154*^9, {
3.7331050088554287`*^9, 3.73310502155128*^9}, 3.733105128640909*^9, {
3.733105168756222*^9, 3.733105194876418*^9}, 3.733105351404951*^9,
3.733142657520768*^9, 3.733143227773417*^9, 3.733143414088873*^9, {
3.733143456222357*^9, 3.733143470816703*^9}, {3.73314355313389*^9,
3.733143570238624*^9}, 3.73314360893747*^9, 3.733143654764827*^9, {
3.733143738188299*^9, 3.733143807309558*^9}, {3.733144623315065*^9,
3.733144632371006*^9}, 3.733146781037992*^9, 3.733146944017826*^9, {
3.733147395251775*^9, 3.733147459570654*^9}, 3.733158217471978*^9,
3.7331595064741697`*^9},
CellLabel->"Out[93]=",ExpressionUUID->"c4d1c8ee-f64f-4781-9185-9ef218cb4b79"],
Cell[BoxData[
FormBox[
GraphicsBox[{{{}, {{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.01],
AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJxNm3k8VU/cx5ElS3aXe+1ChRapiOSqiFYlInuRIlkiSyVLhbIkqYiIkBLZ
9+zRgpAlskRlabEkIfE8zx/PfH5/3df79f7Od+bMOWfOOTNzpY87H7ZjYmBg
KFjGwPB/v/rpmU/k4njojg1FL9qKOelPt8mcWl3DQ59ZUey/sJmLziVQ7eky
ykNnklKY53zKRf+1WGIawMZL2OCMwpvfVLBp7LOHQkq89PJ69Z+rh7jo+3Vf
1n3W5KU/1q6pe0ldQfdeUz9ndxB8Y6Pdx/vW4BVn+L8Fu/LSO1YEn5o7sIL+
7eOqK+sDwKIiQyORt8Dnnmpo5SShvMea21G3clB/6so93Zuq4dfyrZ6MbeGl
r3DbqNEWsIK+tak08eUAuJR2O754nJd+ICNcxy5/BV1a2z7EY5GXvlZz3ZGK
ryvorzpkp/9y8RGvdXTa/IAoHyn/db2Mytk1YPGnCx3mqmBztqRYUR0w/0hl
9dPDyLdt474gbmvwmgMrBXWc+Ej957KzQgx8+Oh83wUpExRu+i4/r3/KQXz0
R6+Sz3O6c9M5lz3zGYvio5/ZcbOc+yE33S4+lelCIjjg8/Gwzxl89IKJm+tp
jdz093Yz7KuL+egepQbb1Ga56RzJs5a6dXz0o8c2ZrrJ8NB1y0cd6C189CzR
jMLWvTz0Vq1bzMK98NauFn9fj/DRlxgOLVm7/+91cz1T2GKaj1xHvErKok1L
fOQ6emEuVyXByU+8+6m0FwcpYJeOX9U20uCYijRPIyV++v9fp0Nl//wUVeFn
H7H5ftbmJ9fl7N4vy/33gR3cZwsYj/KT+hXFKVR7G3iKUX5ptiNYuUR01aAH
P7muy+uD+mcv85Pr+ruAqd1MCHjw/pbNPVGIT1FXaUiLB0fZTUSZp/GT+8Bs
dwXH/HNwrUHlfb8SMKsRY+5EDfIr68YW72mEf/ioQSiig5/cR2G57Iov+vnJ
fWQeqHKsawR891MoY98kP7mvdDQ/X2ye5yf31Y2wFLlnywQIZ+4eP+zJJUDi
C11STdcJgQ07QkJbxQVI/lfeu7bZysPvU71cOLQO+fbmTu45pAo/esdN+5kW
eI0s2+c/u8HDa6a8lQ1Q3tSqWu+YCXjHOuvbbtYCZBzInqIl+JwSIOPAm4L8
dDcXATIO5Lqc+3XMS4CMA8cbZEpU/ATIOPDZYY36vyABMg4oTYRnFkYIkHHA
0YTt0Im7AuS+j5b7Z8qQIEDGBU+h+wwRqQJkHIj3a/fhyRQg48Cczbl//vkC
ZBzg5xQu+1oGbxmsO6pZCy9RfK4g6A2YTYL5SG0ruMnGZPLXB5S/9KCtjPIJ
3vz44JDSiAAZZ2Q9GaO2jMP/dKr9rTIjQMadY1M9W+T+gdcOi/pxMAsSjj3g
Pz/EIUjyGTKoNWXzwRusT5RxFxEk49aOKkMJRUlBMm75eCsOd8jBz8/uTPJU
grePZnJfoQJvvpzmd28r8mfPho+K0MEiVmWt4bqID6g/ajG/Dz7cxeOJmSHy
6+0J7c4xRfyFdu8VDNaIT/589fjOk/D5WidnL56Br1Tc8SPDDfmsOvMt27zA
/M/aT0/4gg+FKisyX/1P/WOdL7hvIL9YjwmdNxL5rzC/er38LuKDfGq9ZuMQ
zxvkatufBL/BIjCt/DF8fNE2s6hMsIaD2z3rPOTf1BrmKVcCNtGL4B2sQPyB
c7wX7tTBK0boNu14A15IZpYefofz/y6jPCSwA+Vzsq5JiHwUJM8lxXqR348+
gTPF22QUhtH+Ez1lZWnfBclzq5M1qFN8CtxnEh4U+keQPMekmXsHfi0IkudY
iYvSH0MmIfIc2/L9a28GmxB5jh0/sObxIhd4S1TtKX1+sJqD1sYwYSHyXEsr
7aS8FhMiz7WqlVdWM8iAT9v+9lq/CvHXGu9STZTAhnG3RX2UET9xqC0ieosQ
eS46M/699kRDiDwXU6LP8RXTwX+57bWqdMDuxdVSNXuEyHNTwUyt7sVBIfLc
vGSmtS3viBB5bkoNCUUnm4K3/a7qC7UED/nzr3Y5gfJ/XRMv7z+F/C0Zzb9k
nVB/qPC7WzOu8DHhDxyqz8MbfWAJCb4Az3Qv4a+eH/LvVGpvXnYV9e+KG+Av
DoFPd2lsORWO8s5h3lSBKPgvLHdmCu/C939L8zgah3xbaOzJk4mIfzM/cv1a
ClhSb/9WyhMh8h4R+5q/JDET/JTvp4h8LvK1rz5jk1oIX6P364F0mRB57wi8
UvPxbiV40e2PHHudEHkPefX+ylWPV2CrLZqsvY3g7+FNOVqtQuQ95XFPTXR8
B/h34dXimW7Eb5k6tnpvPzhS/PT32CFwrFQ+z9dhtIetamWc0nd4XyWf+2cn
4K/7WgpnTKO+xp0m1C+z4JD5d0+o/4TIe5P3TcF2fUYKeW9a1XfooQcLhbw3
VUjeF4lnh7d3/LqzcgX8LjlupX4+sKxry4c5IQp5rxp8+N6Il0Yh7113Ux8+
lpFA/AOPx90bZJDfz0NrWl0e/HYo+R9dgULaO751fnHHOjDfzQMM2hsRz754
m11jC9h9Pl1GWR3xk4WHDVdup5D+iPbTTObbQSH9mcjDRFvQAfuPSlcM6lNI
/8rkLI+t2w+f5M+V8+gQ8jmonuX2MwIXvzEtOGqK+PSEr88VLZCv8I0wy4I1
uO3Mx+IGW8SzTvB0RJ4C55v7WB89g/z+8e+sqC44vp76vO7Oc+hf+vGCzlue
4C3phy32XED/cLZNuy76gg0Oz4hmBSB+o3CCjfk1cFyznD7rdcSryz/vygiD
N2cwpBhEgl+U8C+fuI3zr2M3lBt6Dz7132NJ+TgwV7rqobIEcPl3wwMHk1G+
9EuOWH8qri+fy/NVjk8o5L09Nr1q5+9n8KWhN9MuZMMffzEwtZgHz+Iurni5
CKyUn2y0UAp+GVrteb4CfG9r6Z0f1cj306Kq0OYlhXwnOK7729/6Ciyd6C+o
3Yj4rmjrYxnvwA+47hYIvkd85G7hdT6dFPKd8Wv+Zd3Hbvjw85cDtvWh/LHm
FadjPsH7LVfx/fUZ5TM0Hr3cM0Ih3ymFlRy7E76Bs44wM0/+pJDvFjX6Sib6
FIV8t5he+qkT+huc8vFTW/ss4t+sOftcbIFCvmtiD871Wy+BT13oO5nEJEy+
c8a1zup/YgHHFf68Ic4uTOKNU+9vPMoFnx+bqh3OA1/JrVpezQ8vEeyQPi0k
TL6b3hYe4ZClgg1jloYMxITJd9O1SEf1C5LC5LupOjSCL1kGXCxm6tQgJ0y+
o15FZxz6thr+k6JdNacS8k1yG9WsWQ/+dU3HRGcj2I/nzxXLzeB/btL7PdSQ
z/bLubwQDfh4iegX97cLk+8+H/eVzk+1EW8wnfeqaBdY/mJnS81ulI9o473x
dg/KS9T2zbbuB19TLpToNPhP/ygvZ/hgCDaVUUvsMgZX1aQwdZiCq/c+Vmgx
R77lvhGir63g66qSuyqPgz1U5e3y7XC+DjQZ1KadAlubGs/ddcT5dXp0nO3a
WbBLcOykqyvie5ZES83c4UPVF0/u9AR7Zx+aXe0jTK5XirqUG9clsBvVqfPH
ZcQLCW9WbAwA34k46/LkKur7cY39ydVgcGjJeLflDcQr5TKzbglH/tMdcus4
I+G5vRSM+6Lg1b8N+WXdgVeJEs/2jUH+FdNxo3vj0H8CNdJrhRPAEzN2vgMP
wRmd4gNpj3A+TnPPHnFKg/+WF9+/4Qnyf7PNCZjKQP1bd7//33d6+IcycWIu
OfDpDvEiSvnwQgdOqn4tRH61ussXHpSAxRKdho+Uoz3nbmdeYq+Et9pbRi+r
xvXK4syp4lQHni3kPCrWgOvbY35V1qvXuB/dVV5qejSCQ6J3s0i+EybzHInR
y5fXt4LD/1jrObX/p3x3cgNfF/y/Wskbed3CZB7kfLbELaNeYTJPkk/92j/d
D/+FqfD8rUFhMk8ix95ksu4LeMnhRHDDsDCZN6kUfMpmMwaf9vR915/v4Kl7
nIuh48hfK+jpLTUFP75BfX/ONDhy6NyFHX+QP45Pi7VlDrwuJmfcYkGYzNO0
m33aOroIfqbX/dWNUYTM2xw9+Xh2fpkImacZ+njY1Z8VfGXp42FWdvBWY92E
EE4RMo+zN+26CSc3fA5Dkt8NXrBVlR+VQ0CEzAudShKWCxIC81QapjCJIL40
SSLuIg3ctNuS87cY4i0Vfk87SoLb91Yf+yQN9tn2cLuRLMr3rHRIqpcHS7+a
DFJbg3jd++yTaYrgrcWX+4XW4fgG5iSMAjagPM90puGPjYg/yjr90Xgz+vO1
ZdbUC1X4ZKaEO3Lq4M72S6+vb0O+yKRlN39uB0dJfRkx0Eb9IQttHdk7Rcg8
Gb3f14xPF/zSPdLLWU+EzJv5n8tb/3YPWDI5LGDVfhEyjxYwVOHmfxAcrvKN
sfuQCJlXGy7MUFY+An+v6sGyIGNwxnsT7x4TxGdnOt9eZwZeud/D2M8C8e9+
zVa+s0J7xFWC2iWPw+/8mR7tZIvy7jYjTCUnwROr6iVYTiOefUfD2AFHMFXU
8dRdJ7BFhFJMnzO4cfKar6wb6u/im6KedgdTtIfOZJwHj5o0ev30AnNWSmmt
vwAWcNlbdfYS+n9gvojh2WWcL8abrYuj/jifLExLZXJX4KveJG2zvgYOFJK6
HBOM/NtKOq62XP9P/++TPbw8DJ5NzPaLZgR82dZxulsk+iv+ktjJlCgRMi8q
c4Nu3BktQuZFFTqe8S+/B1+TlhenGgv/VSb5t12cCJk3ldSvk4h6AL9xyZZa
kQifyff662gSvPtW9WCBFBEyz7pBam5RI02EzLM22+rtO5EO35Ng7xryFL7L
/rZz5jP4UCMOvdYseJ3lyxams0XIPC2bQkEoJQ++7Jzp3y0FImTe1iBbSt+4
CNxQp+npXiJC5m11sgauRZaBOW+oej97AXaJOXuwoVKEzPvWaz/nGKxGvu0U
uYz5WrSnoPPXJv56cIS3durqV4i3k1Nm3P4G/u32z7qHG8H/Tvp42TUj3suP
765nCzglpy45uA1s5ZSdcK8dHHDmx420TrT/dOnN0/kfwMeLnm+t7hEh89TS
Ijb/GnvBUqO5+V39iF+6U3xi8JMImcdu/+G3/NsQ2FdcOGXqC8p/LAtSnxtG
ecHGj68WRxH/okziyLLviOd3PNLN+hOeQzHQgn1ChMyTX3yZ2ccxBb/W/4Ml
5zS4T5S5n2MG+Q52rrVmnwVv9TwyxDqP+N067qeXLYAZBYN/Lf4D52iHBMwt
obx+qbPwL0YqOZ71S8q535ZRyfVAlaozHmIBt9WLLetmQzyjumJxMzu4z/iT
dy0nldQ3Fb9Ot2gFlawDVGxglHzKA3Zo12GJ5wNbzw3PhQlQybrARG7Lv0tC
VLIuMNDwjc9JGH7xibiqGRX+se/+s3qi4INi1kWbxBH/h38rRUryP/FPSoI5
pMHDX+t4p2WoZJ1BNEQ966MslaxD/Ob/Y1srD25t6Nr4dDXi+fJKqZEKVLIO
4ZjiQzuvBN6lOr752Drwj+bJM5obwFPJppWSG6lkXcOwaGED4yZwxeesik+b
wa/adZ2qVFE/lee2euJW8K0fp1b7aoAvpUermmmCU01GT6lqoX73CeVyfm0w
u962zT92gPVp71te7kL9P9lqoxJ04cNj2i946oEfaLdcP7CHStZhXCx9q2T3
Ucm6i/K2ZKn5/VSyLtNNYUlvOoh4ObFTZkmHwF5OEWoehohvktbU3m2EfLG7
N54XOQpO/7qua8QEvMA4ZV90DOUTY7bKB5nDB2ZUCxhZgjXV9ZVlrKlkXejz
ruDLP22oZF3oTevWpeITVLIutGeCkn3FjkrWgS5ld0YfsAf/VVHJFD4NvpXY
P9/vQCXrSHNKty6mnaGSdaPL4ksqZ89SybpR0csP0ptc4OUi3uvOuSJf10Ri
cvk5eOEL42r+HuC5Nme2XZ7gv8XveFi9qWQdKpGl8nC9D+r7+2TsXdBFKlmX
2lG6cH23L9jy5EN/Vj+ww0JAfq0/eOf4nlUBgeBl7x92br9KJetaV2zX189f
A3f4xc7kByO+ckPISZfr8EopicIKofCJW69yDIWh/eke3Vr3I9B+fe6dRYcj
wZbD1u7sUWBOoXb3itvoD0qvVon7HfC+IrrOmnvo34+G5ym9MfC5t3zX3bwP
bg6fCdsRj/iYWJ/N0w/AyjtS5VIScb5r9glaGSXh+nlbbjnI/Aj+VIfE89wU
lL9H+dFgkwZ/ZbvNWp501P/iIH9f6RPE+4ff6bHPQPxYQKC8QCb8lnmnivIs
+N9sY6n22WiPNtuNXt5c+O/3h04U54ELc6+q2xSAzwcxHV9ehPbQ48a6M4vB
d2sbU46UgkOlNWrmynA+hlZWqTx4Aa8S9uOPdiU8u+t+3i9VOP9Lm50uBdWA
u+50aa2pw/UQl0wzef0SPrW6/KVDA66niuy9oRyvqWQddW3Q/vT0N1Syzlqe
s1dCrxHcvdj47UsTykdEmvEHvoO//cPnlmQr+Miv7DOlbcj/69PVh8bt8AdM
LihPdiDfohFF/EYX2mu0rdtWthvevFmfvbwH/HbLMIdRL/JxLKk4fO+DF6Fl
rwocAEcO9O2kDiL/XX7Niswh+NquPbE7v4Al6661d35Ffob3Z10dR+BZnPzO
Lo4i358Tao03v8E/n+MPl/kBz9Z7Izv3JzhLUUJt1wTiJc7tknk/CXbM9nI5
8Qv9t95408qpaSpZ57beOaHuN0Ml69zKTbJFK2bhRyv078fOUcm69wvjjs/y
f6lk3fuxrnZ0zgJYo4ThmeYi2NvwulLDEpWsiycpGQoeZqQRz/ah2baHiUby
d9u5S9gy00h75o7laX9noZH2FJUyNZ9jg89la305vxwcrnF7jT8HuKal5A8r
F9i2pkA5dAXyDQbPdvLy0Ej/NNImxm7zwsdMcTmK8KN95pwvTO4LoP3hg655
4kLwNV53fBMoNHK8TodjCqVEaGQfQKTXsNVDKo3sA/D3/uEpLQp/97Qww0Mx
8NjQu1lJCRrZJ7DEcfX4A0mUvxryQFNMmkb2DTBEBV2PkaGRfQO+n9P1KbI0
sm9Ap+7shVty8NfYtKS4V4GZ2APVQlYjX1VuUu0yBfhcX5a6S4rIZ3WWX/2P
Eo3sQwgV2iDrso5G9iF8jq4NHFkP/yBxs6m1MryM58ijzo3gp9+07Q9sAn+3
SU2s3Yzymc3eh9RVUb9HuaRPlhqYuvsvTVYd7CjmvOmeBsq/9u99yamJ/PUG
j1t9t9PIvojC2Q0mk1pgo8tdR09o08g+iiP+Sy3vd9DIvonZjaz1OrsQ/9x6
n2qBDuJTnJVXyu+GN7QUvBGth/KidYbOzHtoZJ/F+47979z20si+CnMb68yB
fWDFphH2AwfA/TK7hkoO0si+jNeMzeqrDsEHPPnCG3UY3mF+yG7REF7bSU79
tBF8qjhLeJsxOL2u10bTBPH7KtgLUk1pZJ8HL8vQdR4zsNfGmgFPc8TfvLKs
qN8C3rV7gXe3FXxdPtv3Z9bwezUu6gsep5F9IsYqOWt8TtDIPhEDDsawfluw
RkvFuV0nEb9uu07fY3sa2XfSljH8lus0eEzin5aLA8q/2Naj2uZII/tO0ow6
8zY7wftb6xbePYv8axYuas05g6edm/cfc0X8mozIwRI3sM8e4UWaO/h8eG6i
jweY7WTx6w/nka//9IWLal5o72Tv3oI73ogfzr7oNe2D9kb4W9UcughvGK1z
N/MSjeybSRm8PM1xmUb2yZznsuo56Ucj+2gST6jsq/aHPza8b7d4IHySzt+3
nleQL7snrLflKrxNgaG3YhB8/K37iVeCwU29uYa9IeCdBWO3Nt9A++O+hVmG
hcJvWRor+BwGjpA9GKcRAc7VZuO5dRPlH45b8YxE4vhzfFLiNaPglwZXlty6
DX75Ud5uOBr52t7NPdC4C+77OGwfcQ/xk20alYMx4Lfb6Y8338fx7zbXkgqO
Q//lSAeu7o6nkX1IqhpGVYoJYA2upbGLiTSyL6k861VK40P4vNl/k+LJyOfs
9rnZ6RH4l3WdVnkK6j9aNaLNlYb2r9xzp+PYY/h0R6HFx+nwJwyeFc08wfHs
633EuisDXjNnx8jNZ/85XwqNFr2Z4EWz6/ZrnqP8FLWSxSMb/GUqV60yB/Gb
Nz5l4MyD3zAwZmGUj/NlV11okFCA65/J3PjDSCGuf9mfHLPKxeC1XtRnPiVg
kaK62epSjB/NCoY9HOXgi1wsRodfIL7bROJkTAU49M0n7oFK8JmByIPy1Whf
T5vL6jM1aJ9AcmVMdi3ifbhqkmfq4MciinU16uE5nL8EXG5Ae6KfBZnUvEJ8
Bt+netY3YGnZjS36b1G+YUOpe2gjylfrluU0Nf3Hq3nc4H0H9oyXWzrUAk5o
5uKOakX54J+ni9rawLv6LiwKtIPHd/sPGHaAmWOLLKM6kS9+ubV3axd8ZVj+
Br5ujOepozNXDvbAMyXbnA/7CN7HpsLyphf5mBUfKy/vB8+N/vu7awD9ETns
Yuv/CZ4rQtOxfBC+SSCRd24IPs71/ZFNX3D+Rs9Q1Jy//uf8RT0sSR8GP1XP
/jg0gvJFgX4PxMfgfx/dw3D0GzzVUZ/p5nd4YY2iRw0/wFa8LcMM46hfcrHx
jdoE/JXBEQOXSeT7d9LMM23qP+ePwUqr7xfiH4wrpQv+Rj4J7cW8PTO4nwYb
OU/4/cH9tl8jPDd/Fuz/tzx1bA4cvb9tm+RfjA+dmqznDRcwvrClhh8O+ge+
u/ZRa8ki4j/p+878WAKf2n7khRSjKIkXErdQMGQCO71sVr+6TJTEN48Ojhcw
i5L2ZLE06o+wwLfY1+pR2eAvr136rr8cXL8zd4sPOzjHniL/hAN8Sd6y9AMn
8rX1VswsX4H2MJe5dKlyi5LxdltlivVJHviKkqiI27woT93vbFfNh/wWY2cG
x/nhjTsrWcUFwZUKCa36Qsh/qVFD9zxFlOw7fevz2iZJWJTsO71Y6SvXJCJK
9pnKLd2InKOKkn2oRx3kUmVFEd+x3PfEQTHkq89reOUtLkqeJ2Oiah+SJcCv
KxYjGyXB478PTM9IIR9l5BiDlAzy2dw+UqC3Ej640YniKgvm1uiSipFD+1xM
69or5eHNfE5uHlmFfF2137V41sD7bw75vVkB/vmDM8bmimhfzuP64wFKiJ9s
eU17vBb1rXVO9W1cB5/y9Hr41Hr43SFpe4SV4YcGlHI1NqK+o8f3NFipwJfd
Xn89cBPK3+/gnEvdDM9vyS30eguYc+vJvu+qYJv9O4x4tuL8CZm2eCuri5J9
wp5T2vsMNeCPBFe/dd8Gljzu/zdaE7wqMaOrYDvaU6DhZtupBdZnY0j4Qwfn
ZQYGC+9AeYNCBWnVnf/J5ydz2ngX4sV33LP20EH7xXiL2W7ron+2d2Zb5uzG
+Zi1zLJ7pwe/U79P7Kc+uI7f8QrnXuRb4g+IW70P9TtfPGinsx/9UWW+1Gdz
AH4yrpzd9yDYh7HgS4wB2uulIHgu/xB8R9SynHeHwa7RWUnfDME6J3bqsBqh
fMSKsRgpY/h5v6ZE9aPg6muix46YgHtq/9Y5maK82IuYz9eO4fisWyULEszA
z7cXqReZg+3Fw9zeWYDNTzZYjFiCGcejFpaswOEO1IPCNuhPWYcAo3XH0f9T
5rM8OifAFjcf+ZrZYnyR3PD8oasdxi8X3V3eQScRr1gWwhJvj/zfTdJ1c07B
a9a82VZ/GpztRx3pcUB+npkSvQlH+LP2XZbMTvBWszEKImdRP1fGqgxFZ7CF
XfrQdhfEU4d1Ww65wrO9X+Vh64b8Qlnnms+fQ7xXz6GBYHfw67jRtFgPxKsI
H5fPOI/jCzw4aFbuCX9MMVKvyQus4xr9vc8b+T41COmN+4DnS9TMli6gfVnZ
svI8l8Dhs0uPJXzBJWUTQ2svY/xnWSHeuc0PzwtK95OAvf7wgTMVX00D4Gco
ActOBcLrt1I+eFxB/scPk+0Dr6J9mQP7s25ew/FebVR/Hh8EZg6JcHgSjOu3
heLaVxACvmjBzFVzHfdjnPzZX003RMn/GKYl2m53h8KHdhyd+BKG+6OxUop1
Mhz5Ujcd7vgbAZ98hteGNRKeO+hyKu8t5OO4VpNKi0J83kGG47K34TUyTbvW
RoMZDX6xq95B+wrqJ2a07oqS/1mcD/VI0LsnSv5nMTj3aNmhGFHyP4udBkkr
TWPB8Xk3l6zvi5L/XbRtiLp7Kk6U/O+iMvftN+d4+MN81gvnH4DTmFxeXUpA
/Cp5ScMriaLkfxmJSxEx1x+CbWc/x91MAv8P9qeDnw==
"]]}, {}}, {}, {}, {}, {}}, {{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVxX08lAcAB/AjIpXsKq8lVCy60JVCdj+9LKuOjVYWLuqQ8n6ct+Puea7y
Es8jN9uhmj5WXVdKL/O5ZJJKfazT5m3yUqtpjuUlCkVs/fH9fK0PxPiGajMY
DO7/Pv2o67fgxYxhTnGrnb7q8jRHFd4bvaD3LScnZ7ds6C4DihHt9DmN7zlf
2hfaSFna2Kpz+vG0Wgs1EcaeSh1dLDdv0YyUzEWFxjRj4roB3ticzR8oMcFX
o4aiBr2F8L+Q2dNfshIObxaOhfEtkduXSvWVrEPKmOG7J5Q9+hV7af2hrdA3
4VOX5a4oaBJbNnR6g2WZkJSeuxlKcUbwvp27oSzbNHzP0Qusc1cy9xd8B4uJ
4UQe1xvxD0IL3MU8KLKmhr/Q8kWUW+at5v4QVIuE5ROm36K3qWJQls2Hu5Jt
uNnGH3Wa04WcyTCYV5m/5I7vw5p6qd2NsxFIuJZULZ3Dw6QVy4FpEQn5thmd
GkEwqOpLgsnMaDj49HwkOkPQQZ/0a/s+Fmm7dD50hBzEUobj+RVP4jDldstx
cSMfq1q8BtuWC+C29OKhHv8wyL3U/t7xCWCdqhKkdYVDlcYWuSsT4TsvRDW6
LQKlTOPC3Ckh2LGbGVqNh+F6qCPMb2Mytj1QEUPukSi2tliTQaVgkeHh2YJH
UeCl1ZtEP0vFj6Obgmq4MWiW+VU1m4hgG9okTAyMhZFRkO/pI+ngNZRhj3Uc
pnd4lXUpMuCk4FywexoHH9szxi+eixGw+/VYYF48bq5V3flZLkFoqsujrq8F
KHIu+H2hCwF9s50uXL0EHDhg33XzLwJZzh9X6qsTEPT3ePLGLBJ809ppWzoR
FVtcRoQrpGhP4ia4bBVC07o2rFcthcM3yUfy9ZOQvL20khl5FCZlUTMdd5Lg
OmeL3ErvGALvCUTZgmQ8nypLCL56DJIgkzTSJQXdTxJZAbuOwyP2mHHk6xTc
adF9kTl2HO1T+ezSa6l4r5odF1OYCQPt8IH7EWkIHdhU4OqcBXkrN59rKcIv
fs5X1ndkQWd5002rlyLwin44/zopGwZ9VsIeeTr+NaoqarXJwcDn82+N8DJw
sZ1pebYhBw4bDF7xrcWoFXdl2IWfgFbNH+UP28S47c/veG6Ui4D9FqIqrgSG
nwUx/a7mQmvJjZjsixLIzE50KnbkoZXTvDdnFoEpv6SfnEbzILeqkziFEvg1
qoUjyKeg8DCe8K4lEL1PGe8soyDui259dZeA1XbJuaFCCv6FD6+L7hEgrVbP
jSyhoD+QHKWsJ+DVLG3jn6cQcarzpa6aQNNGdtSeagqrJkvV1U8JaGYVFLtq
KFxSOZTZjxIoGg5Xj/dTkPKPSu6+JbCj24NROUAhwKg7yH+MQHllX+jaUQrz
DlGmx98TiI/wdHaYphBp8ibvxQyBj43DD5csosESVibL55G4crv+Q4cxDV2b
BXscDUkEK06xisxodKvD2fULSNQRXrLFy2jkrTQbHGWSyFpXyjO0pzHYknbQ
x4yEq7Xw5OPVNOolLfjHnET//F33cxxpnFnNskxfQoLbO75Kbz0N76PP2pXL
SEw3qwMfbKBh67Sh0tOaREVtGS11ozHTScvabUiElKfUeXrQ+DNTExuzggSz
2OfdDIfGVban92xbEv8BjH86FA==
"]]},
Annotation[#, "Charting`Private`Tag$225710#1"]& ]}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{3.905032608257462, 3.3726288895002337`},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"logb\"", TraditionalForm], None}, {
FormBox["\"logn\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->500,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotLabel->FormBox[
StyleBox[
"\"log(n) versus log(b)\"", FontFamily -> "Helvetica", FontSize -> 12,
FontWeight -> "Bold", StripOnInput -> False], TraditionalForm],
PlotRange->{{3.9512437185814275`, 6.90875477931522}, {3.4657359027997265`,
5.327876168789581}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], TraditionalForm]], "Output",
CellChangeTimes->{
3.733098805918116*^9, {3.733098844148878*^9, 3.733098869397148*^9},
3.733098953603833*^9, 3.733099729865653*^9, 3.733099774279573*^9,
3.7331000562684298`*^9, 3.7331003908160563`*^9, 3.7331004529560738`*^9,
3.73310050641639*^9, 3.733100698136389*^9, 3.733100739468399*^9,
3.733100953984741*^9, {3.73310100708687*^9, 3.7331010301580057`*^9}, {
3.733101075952832*^9, 3.733101098964424*^9}, {3.733101228062871*^9,
3.733101261128573*^9}, 3.733101378374453*^9, 3.7331014581368113`*^9,
3.7331015320454473`*^9, 3.7331016016958103`*^9, 3.73310168234025*^9, {
3.73310394981922*^9, 3.733103989761835*^9}, 3.733104945729154*^9, {
3.7331050088554287`*^9, 3.73310502155128*^9}, 3.733105128640909*^9, {
3.733105168756222*^9, 3.733105194876418*^9}, 3.733105351404951*^9,
3.733142657520768*^9, 3.733143227773417*^9, 3.733143414088873*^9, {
3.733143456222357*^9, 3.733143470816703*^9}, {3.73314355313389*^9,
3.733143570238624*^9}, 3.73314360893747*^9, 3.733143654764827*^9, {
3.733143738188299*^9, 3.733143807309558*^9}, {3.733144623315065*^9,
3.733144632371006*^9}, 3.733146781037992*^9, 3.733146944017826*^9, {
3.733147395251775*^9, 3.733147459570654*^9}, 3.733158217471978*^9,
3.733159506529107*^9},
CellLabel->"Out[95]=",ExpressionUUID->"512b7dd6-a2f5-4446-a208-34eea8238753"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["\<\
Section 5 : Create a list of {log[c], d} and find their statistical parameters\
\>", "Section",
CellChangeTimes->{{3.733144462325074*^9,
3.733144585047222*^9}},ExpressionUUID->"d9f88c59-038a-4a29-8108-\
fb93a3d838ba"],
Cell[TextData[StyleBox["We generate sizeListList below as a list of 100 \
{log[c], d} vales, then fit a linear model to the values and calculate their \
mean and standard deviation values.",
FontSize->18]], "Text",
CellChangeTimes->{{3.733158027007984*^9, 3.733158071269161*^9}, {
3.7331594386238403`*^9, 3.733159477126528*^9}, {3.733159595070384*^9,
3.7331595955648823`*^9}},ExpressionUUID->"04c78784-c9ba-4ec4-a187-\
192f1313cec2"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"sizeListList", "=",
RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"For", "[",
RowBox[{
RowBox[{"m", "=", "1"}], ",",
RowBox[{"m", "\[LessEqual]", "100"}], ",",
RowBox[{"m", "++"}], ",",
RowBox[{
RowBox[{"oldCells", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], "}"}], ",",
RowBox[{"{",
RowBox[{