-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpiano-tiles-bot.py
114 lines (87 loc) · 3.71 KB
/
piano-tiles-bot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import mss
import cv2
import numpy as np
from collections import namedtuple
from win32 import win32api
import pyautogui
# Written by Zubair Sidhu
# github.com/ZubairSidhu
# Python 3.6.5
# Plays Piano Tiles automatically
# Game link: http://tanksw.com/piano-tiles/
# Uses OpenCV to detect tiles and pyautogui to click tiles
# Steps:
# 1) Run file
# 2) Click top left corner of play area
# 3) Click bottom right corner of play area
# 4) Sit back and watch
# ===High Scores Arcade Mode===
# 1) 414
# 2) 409
# 3) 408
def set_window():
click_count = 0
state_left = win32api.GetKeyState(0x01) # Default mouse state
# Checks for left click
while True:
a = win32api.GetKeyState(0x01)
if a != state_left: # Button state changed
state_left = a
# If left mouse is clicked
if a < 0:
# First click
if click_count == 0:
# Stores mouse position
firstX, firstY = win32api.GetCursorPos()
print('Top Left Corner Selected: ', firstX, firstY)
click_count = click_count + 1
# Second click
elif click_count == 1:
secondX, secondY = win32api.GetCursorPos()
print('Bottom Right Corner Selected: ', secondX, secondY)
click_count = click_count + 1
break
# Finds width and height of area clicked
width, height = abs(firstX - secondX), abs(firstY - secondY)
# Creates a namedtuple() to store play area dimensions
Dimensions = namedtuple('dimensions', ['x', 'y', 'w', 'h'])
dims = Dimensions(firstX, firstY, width, height)
return dims
def screencapture(dims):
with mss.mss() as sct:
# The screen part to capture
monitor = {'top': dims.y, 'left': dims.x, 'width': dims.w, 'height': dims.h}
count = 0
while True:
img = sct.grab(monitor)
output = mss.tools.to_png(img.rgb, img.size)
img = cv2.imdecode(np.frombuffer(output, np.uint8), cv2.IMREAD_COLOR)
# Converts image to HSV so it can be used with OpenCV
hsv_output = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# Mask black tiles
lower_color = np.array([0, 0, 10])
upper_color = np.array([0, 0, 20])
tile_mask = cv2.inRange(hsv_output, lower_color, upper_color)
# Smooths image for easier rectangle detection
median = cv2.medianBlur(tile_mask, 151)
# Finds contours in masked image
ret, thresh = cv2.threshold(median, 127, 255, 0)
_, contours, hierarchy = cv2.findContours(thresh, 1, 2)
# Checks if any contours have been detected
if not contours:
continue
else:
cnt = contours[0]
# Loops through detected contours (if there are any), finds rectangles, then clicks the center of each one
for cnt in contours:
epsilon = 0.2*cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, epsilon, True)
x, y, w, h = cv2.boundingRect(cnt)
# Finds center of detected rectangle
cx = int((x + (w/2)))
cy = int((y + (h/2)))
# Clicks center
pyautogui.click((cx + dims.x), (cy + dims.y))
count = count + 1
print("Click: " + str(count) + " cx: " + str(cx))
screencapture(set_window())