-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtreap.c
205 lines (179 loc) · 5.21 KB
/
treap.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#include "treap.h"
#include <stdlib.h>
#include "fatal.h"
struct TreapNode
{
ElementType Element;
Treap Left;
Treap Right;
int Priority;
};
Position NullNode = NULL; /* Needs initialization */
/* START: fig12_39.txt */
Treap
Initialize( void )
{
if( NullNode == NULL )
{
NullNode = malloc( sizeof( struct TreapNode ) );
if( NullNode == NULL )
FatalError( "Out of space!!!" );
NullNode->Left = NullNode->Right = NullNode;
NullNode->Priority = Infinity;
}
return NullNode;
}
/* END */
/* Use ANSI C random number generator for simplicity */
int
Random( void )
{
return rand( ) - 1;
}
Treap
MakeEmpty( Treap T )
{
if( T != NullNode )
{
MakeEmpty( T->Left );
MakeEmpty( T->Right );
free( T );
}
return NullNode;
}
void
PrintTree( Treap T )
{
if( T != NullNode )
{
PrintTree( T->Left );
printf( "%d ", T->Element );
PrintTree( T->Right );
}
}
Position
Find( ElementType X, Treap T )
{
if( T == NullNode )
return NullNode;
if( X < T->Element )
return Find( X, T->Left );
else
if( X > T->Element )
return Find( X, T->Right );
else
return T;
}
Position
FindMin( Treap T )
{
if( T == NullNode )
return NullNode;
else
if( T->Left == NullNode )
return T;
else
return FindMin( T->Left );
}
Position
FindMax( Treap T )
{
if( T != NullNode )
while( T->Right != NullNode )
T = T->Right;
return T;
}
/* This function can be called only if K2 has a left child */
/* Perform a rotate between a node (K2) and its left child */
/* Update heights, then return new root */
static Position
SingleRotateWithLeft( Position K2 )
{
Position K1;
K1 = K2->Left;
K2->Left = K1->Right;
K1->Right = K2;
return K1; /* New root */
}
/* This function can be called only if K1 has a right child */
/* Perform a rotate between a node (K1) and its right child */
/* Update heights, then return new root */
static Position
SingleRotateWithRight( Position K1 )
{
Position K2;
K2 = K1->Right;
K1->Right = K2->Left;
K2->Left = K1;
return K2; /* New root */
}
/* START: fig12_40.txt */
Treap
Insert( ElementType Item, Treap T )
{
if( T == NullNode )
{
/* Create and return a one-node tree */
T = malloc( sizeof( struct TreapNode ) );
if( T == NULL )
FatalError( "Out of space!!!" );
else
{
T->Element = Item; T->Priority = Random( );
T->Left = T->Right = NullNode;
}
}
else
if( Item < T->Element )
{
T->Left = Insert( Item, T->Left );
if( T->Left->Priority < T->Priority )
T = SingleRotateWithLeft( T );
}
else
if( Item > T->Element )
{
T->Right = Insert( Item, T->Right );
if( T->Right->Priority < T->Priority )
T = SingleRotateWithRight( T );
}
/* Otherwise it's a duplicate; do nothing */
return T;
}
/* END */
/* START: fig12_41.txt */
Treap
Remove( ElementType Item, Treap T )
{
if( T != NullNode )
{
if( Item < T->Element )
T->Left = Remove( Item, T->Left );
else
if( Item > T->Element )
T->Right = Remove( Item, T->Right );
else
{
/* Match found */
if( T->Left->Priority < T->Right->Priority )
T = SingleRotateWithLeft( T );
else
T = SingleRotateWithRight( T );
if( T != NullNode ) /* Continue on down */
T = Remove( Item, T );
else
{
/* At a leaf */
free( T->Left );
T->Left = NullNode;
}
}
}
return T;
}
/* END */
ElementType
Retrieve( Position P )
{
return P->Element;
}