forked from rasmusab/bayes.js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mcmc.js
1118 lines (1014 loc) · 42.2 KB
/
mcmc.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"use strict";
// This boiler plate code here is taken from:
// https://github.com/umdjs/umd/blob/master/templates/returnExports.js
// It should make shure that module can be imported both in the browser,
// Node, and by using the Asynchronous Module Definition standard.
// If this module is loaded in the browser it will created the global
// object mcmc .
(function (root, factory) {
if (typeof define === 'function' && define.amd) {
// AMD. Register as an anonymous module.
define([], factory);
} else if (typeof module === 'object' && module.exports) {
// Node. Does not work with strict CommonJS, but
// only CommonJS-like environments that support module.exports,
// like Node.
module.exports = factory();
} else {
// Browser globals (root is window)
root.mcmc = factory();
}
}(this, function(){
/// The actual module code starts here ///
//////////////////////////////////////////
////////// Helper Functions //////////
//////////////////////////////////////
/** Returns a random real number between min and max */
var runif = function(min, max) {
return Math.random() * (max - min) + min;
};
/** Returns a random integer between min and max */
var runif_discrete = function(min, max) {
return Math.floor(Math.random() * (max - min + 1)) + min;
};
/** Returns a random real number from a normal distribbution defined
* by mean and sd.
* Adapted from https://github.com/jstat/jstat/blob/master/src/special.js */
var rnorm = function(mean, sd) {
var u, v, x, y, q;
do {
u = Math.random();
v = 1.7156 * (Math.random() - 0.5);
x = u - 0.449871;
y = Math.abs(v) + 0.386595;
q = x * x + y * (0.19600 * y - 0.25472 * x);
} while (q > 0.27597 && (q > 0.27846 || v * v > -4 * Math.log(u) * u * u));
return (v / u) * sd + mean;
};
/** Returns a deep clone of src, sort of... It only copies a limited
* number of types and, for example, function are not copied.
* From http://davidwalsh.name/javascript-clone
*/
var deep_clone = function(src) {
function mixin(dest, source, copyFunc) {
var name, s, i, empty = {};
for(name in source){
// the (!(name in empty) || empty[name] !== s) condition avoids copying properties in "source"
// inherited from Object.prototype. For example, if dest has a custom toString() method,
// don't overwrite it with the toString() method that source inherited from Object.prototype
s = source[name];
if(!(name in dest) || (dest[name] !== s && (!(name in empty) || empty[name] !== s))){
dest[name] = copyFunc ? copyFunc(s) : s;
}
}
return dest;
}
if(!src || typeof src != "object" || Object.prototype.toString.call(src) === "[object Function]"){
// null, undefined, any non-object, or function
return src; // anything
}
if(src.nodeType && "cloneNode" in src){
// DOM Node
return src.cloneNode(true); // Node
}
if(src instanceof Date){
// Date
return new Date(src.getTime()); // Date
}
if(src instanceof RegExp){
// RegExp
return new RegExp(src); // RegExp
}
var r, i, l;
if(src instanceof Array){
// array
r = [];
for(i = 0, l = src.length; i < l; ++i){
if(i in src){
r.push(deep_clone(src[i]));
}
}
} else {
// generic objects
r = src.constructor ? new src.constructor() : {};
}
return mixin(r, src, deep_clone);
};
/** Specialized clone function that only clones scalars and nested arrays where
* each array either consists of all arrays or all numbers. This function
* is meant as a fast way of cloning parameter draws within the mcmc sampling
* loop.
*/
var clone_param_draw = function(x) {
if(Array.isArray(x)) {
if(Array.isArray(x[0])) {
// x is an array of arrays so we need to clone it recursively
var x_copy = [];
for(var i = 0, length = x.length; i < length; i++) {
x_copy.push(clone_param_draw(x[i]));
}
return x_copy;
} else { // We'll assume x is a arrays of scalars
return x.slice(0);
}
} else { // We'll assume x is a scalar
return x;
}
};
/** Returns true if object is a number.
*/
var is_number = function(object) {
return typeof object == "number" || (typeof object == "object" && object.constructor === Number);
};
/**
* Creates and initializes a (possibly multidimensional/nested) array.
* @param dim - An array giving the dimension of the array. For example,
* [5] would yield a 5 element array, and [3,3] would yield a 3 by 3 matrix.
* @param init - A value or a function used to fill in the each element in
* the array. If it is a function it should take no arguments, it will be
* evaluated once for each element, and it's return value will be used to
* fill in each element.
* @example
* // The following would return [[1,1],[1,1],[1,1]]
* create_array([2,3], 1)
*/
var create_array = function(dim, init) {
var arr = new Array(dim[0]);
var i;
if(dim.length == 1) { // Fill it up with init
if(typeof init === "function") {
for(i = 0; i < dim[0]; i++) {
arr[i] = init();
}
} else {
for(i = 0; i < dim[0]; i++) {
arr[i] = init;
}
}
} else if(dim.length > 1) {
for(i = 0; i < dim[0]; i++) {
arr[i] = create_array(dim.slice(1), init);
}
} else {
throw "create_array can't create a dimensionless array";
}
return arr;
};
/**
* Return the dimensions of a possibly nested array as an array. For
* example, array_dim( [[1, 2], [1, 2]] ) should return [2, 2]
* Assumes that all arrays inside another array are of the same length.
* @example
* // Should return [4, 2, 1]
* array_dim(create_array([4, 2, 1], 0))
*/
var array_dim = function(a) {
if(Array.isArray(a[0])) {
return [a.length].concat(array_dim(a[0]));
} else {
return [a.length];
}
};
/**
* Checks if two arrays are equal in the sense that they contain the same elements
* as judged by the "==" operator. Returns true or false.
* Adapted from http://stackoverflow.com/a/14853974/1001848
*/
var array_equal = function (a1, a2) {
if (a1.length != a2.length) return false;
for (var i = 0; i < a1.length; i++) {
// Check if we have nested arrays
if (Array.isArray(a1[i]) && Array.isArray(a2[i])) {
// recurse into the nested arrays
if (!array_equal(a1[i], a2[i])) return false;
}
else if (a1[i] != a2[i]) {
// Warning - two different object instances will never be equal: {x:20} != {x:20}
return false;
}
}
return true;
};
/**
* Traverses a possibly nested array a and applies fun to all "leaf nodes",
* that is, values that are not arrays. Returns an array of the same size as
* a.
*/
var nested_array_apply = function(a, fun) {
if(Array.isArray(a)) {
var result = new Array(a.length);
for(var i = 0; i < a.length; i++) {
result[i] = nested_array_apply(a[i], fun);
}
return result;
} else {
return fun(a);
}
};
/** Randomizing the array element order in-place. Using Durstenfeld
* shuffle algorithm. Adapted from here:
* http://stackoverflow.com/a/12646864/1001848
*/
function shuffle_array(array) {
for (var i = array.length - 1; i > 0; i--) {
var j = Math.floor(Math.random() * (i + 1));
var temp = array[i];
array[i] = array[j];
array[j] = temp;
}
return array;
}
/**
* Does the same thing as nested_array_apply, that is, traverses a possibly
* nested array a and applies fun to all "leaf nodes" and returns an array
* of the same size as a. The difference is that nested_array_random_apply
* branches randomly.
*/
var nested_array_random_apply = function(a, fun) {
if(Array.isArray(a)) {
var len = a.length;
var i;
var array_is = [];
for(i = 0; i < len; i++) {
array_is[i] = i;
}
shuffle_array(array_is);
var result = [];
for(i = 0; i < len; i++) {
var array_i = array_is[i];
result[array_i] = nested_array_apply(a[array_i], fun);
}
return result;
} else {
return fun(a);
}
};
/**
* Allows a pretty way of setting default options where the defults can be
* overridden by an options object.
* @param option_name - the name of the option as a string
* @param my_options - an option object that could have option_name
* as a member.
* @param defaul_value - defult value that is returned if option_name
* is not defined in my_options.
* @example
* var my_options = {pi: 3.14159}
* var pi = get_option("pi", my_options, 3.14)
*/
// Pretty way of setting default options where the defaults can be overridden
// by an options object. For example:
// var pi = get_option("pi", my_options, 3.14)
var get_option = function(option_name, options, defaul_value) {
options = options || {};
return options.hasOwnProperty(option_name) &&
options[option_name] !== undefined &&
options[option_name] !== null ? options[option_name] : defaul_value;
};
/** Version of get_option where the option should be a one or multi-dimensional
* array and where the default can be overridden either by a scalar or by an array.
* If it's a scalar the that scalar is used to initialize an array with
* dim dimensions.
*
*/
var get_multidim_option = function(option_name, options, dim, defaul_value) {
var value = get_option(option_name, options, defaul_value);
if(! Array.isArray(value)) {
value = create_array(dim, value);
}
if(! array_equal( array_dim(value), dim)) {
throw "The option " + option_name + " is of dimension [" +
array_dim(value) + "] but should be [" + dim + "].";
}
return value;
};
////////// Functions for handling parameter objects //////////
//////////////////////////////////////////////////////////////
/**
* Returns a fixed (same every time) number that could be used to initialize
* a parameter of a certain type, possibly with lower and upper bounds.
* The possile types are "real", "int", and "binary".
*/
var param_init_fixed = function(type, lower, upper) {
if(lower > upper) {
throw "Can not initialize parameter where lower bound > upper bound";
}
if(type === "real") {
if(lower === -Infinity && upper === Infinity) {
return 0.5;
} else if(lower === -Infinity) {
return upper - 0.5;
} else if(upper === Infinity) {
return lower + 0.5;
} else if(lower <= upper) {
return (lower + upper) / 2;
}
} else if(type === "int") {
if(lower === -Infinity && upper === Infinity) {
return 1;
} else if(lower === -Infinity) {
return upper - 1;
} else if(upper === Infinity) {
return lower + 1;
} else if(lower <= upper){
return Math.round((lower + upper) / 2);
}
} else if(type === "binary") {
return 1;
}
throw "Could not initialize parameter of type " + type + "[" + lower + ", " + upper + "]";
};
/**
* Completes params_to_complete, an object containing parameter descriptions,
* and initializes non-initialized parameters. This modified version of
* params_to_complete is returned as a deep copy and not modified in place.
* Initialization is done by supplying a param_init function with signature
* function(type, lower, upper) that should return a single number
* (like param_init_fixed, for example).
* @example
* var params = { "mu": {"type": "real"} }
* params = complete_params(params);
* // params should now be:
* // {"mu": { "type": "real", "dim": [1], "upper": Infinity,
* // "lower": -Infinity, "init": 0.5 }}
*/
var complete_params = function(params_to_complete, param_init) {
var params = deep_clone(params_to_complete);
for (var param_name in params) { if (!params.hasOwnProperty(param_name)) continue;
var param = params[param_name];
if( !param.hasOwnProperty("type")) {
param.type = "real";
}
if(!param.hasOwnProperty("dim")) {
param.dim = [1];
}
if(is_number(param.dim)) {
param.dim = [param.dim];
}
if(param.type == "binary") {
param.upper = 1;
param.lower = 0;
}
if(!param.hasOwnProperty("upper")) {
param.upper = Infinity;
}
if(!param.hasOwnProperty("lower")) {
param.lower = -Infinity;
}
if(param.hasOwnProperty("init")) {
// If this is just a number or a nested array we leave it alone, but if...
if(array_equal(param.dim, [1]) && typeof param.init === "function") {
// param.init is a function, use that to initialize the parameter.
param.init = param.init();
} else if(!array_equal(param.dim, [1]) && !Array.isArray(param.init)) {
// We have a multidimensional parameter where the param.init exist but
// is not an array. Then assume it is a number or a function and use
// it to initialize the parameter.
param.init = create_array(param.dim, param.init);
}
} else { // We use the default initialization function.
if(array_equal(param.dim, [1])) {
param.init = param_init(param.type, param.lower, param.upper);
} else {
param.init = create_array(param.dim, function() {
return param_init(param.type, param.lower, param.upper);
});
}
}
}
return params;
};
////////// Stepper Functions ///////////
////////////////////////////////////////
/**
* @interface
* A Stepper is an object responsible for pushing around one
* or more parameter values in a state according to the distribution
* defined by the log posterior. This defines the Stepper "interface",
* where "interface" means that Stepper defines a class that is never
* meant to be instantiated, but just to be subclassed by specialized
* stepper functions.
* @interface
* @param params - An object with parameter definitions, for example:
* {"mu": { "type": "real", "dim": [1], "upper": Infinity,
* "lower": -Infinity, "init": 0.5 }}
* The parameter definitions are expected to be "complete", that is,
* specifying all relevant attributes such as dim, lower and upper.
* @param state - an object containing the state of all parameters in params
* (and possibly more). The parameter names are given as keys and the states
* as scalars or, possibly nested, arrays. For example:
* {mu: 10, sigma: 5, beta: [1, 2.5]}
* @param log_post - A function *taking no parameters* that returns the
* log density that depends on the state. That is, the value of log_post
* should change if the the values in state are changed.
*/
var Stepper = function(params, state, log_post) {
this.params = params;
this.state = state;
this.log_post = log_post;
};
/**
* Takes a step in the parameter space. Should return the new state,
* but is mainly called for it's side effect of making a change in the
* state object.
*/
Stepper.prototype.step = function() {
throw "Every Stepper need to implement step()";
};
/**
* If implemented, makes the stepper adapt while stepping.
*/
Stepper.prototype.start_adaptation = function() {
// Optional, some steppers might not be adaptive. */
};
/**
* If implemented, makes the stepper cease adapting while stepping.
*/
Stepper.prototype.stop_adaptation = function() {
// Optional, some steppers might not be adaptive. */
};
/**
* Returns an object containg info regarding the stepper.
*/
Stepper.prototype.info = function() {
// Returns an object with info about the state of the stepper.
return {};
};
/**
* @class
* @implements {Stepper}
* Constructor for an object that implements the metropolis step in
* the Adaptive Metropolis-Within-Gibbs algorithm in "Examples of Adaptive MCMC"
* by Roberts and Rosenthal (2008).
* @param params - An object with a single parameter definition.
* @param state - an object containing the state of all parameters.
* @param log_post - A function that returns the log density that depends on the state.
* @param options - an object with options to the stepper.
* @param generate_proposal - a function returning a proposal (as a number)
* with signature function(param_state, log_scale) where param_state is a
* number and log_scale defines the scale of the proposal somehow.
*/
var OnedimMetropolisStepper = function(params, state, log_post, options, generate_proposal) {
Stepper.call(this, params, state, log_post);
var param_names = Object.keys(this.params);
if(param_names.length != 1) {
throw "OnedimMetropolisStepper can only handle one parameter.";
}
this.param_name = param_names[0];
var param = this.params[this.param_name];
if(!array_equal(param.dim, [1])) {
throw "OnedimMetropolisStepper can only handle one one-dimensional parameter.";
}
this.lower = param.lower;
this.upper = param.upper;
this.prop_log_scale = get_option("prop_log_scale", options, 0);
this.batch_size = get_option("batch_size", options, 50);
this.max_adaptation = get_option("max_adaptation", options, 0.33);
this.initial_adaptation = get_option("initial_adaptation", options, 1.0);
this.target_accept_rate = get_option("target_accept_rate", options, 0.44);
this.is_adapting = get_option("is_adapting", options, true);
this.generate_proposal = generate_proposal;
this.acceptance_count = 0;
this.batch_count = 0;
this.iterations_since_adaption = 0;
};
OnedimMetropolisStepper.prototype = Object.create(Stepper.prototype);
OnedimMetropolisStepper.prototype.constructor = OnedimMetropolisStepper;
OnedimMetropolisStepper.prototype.step = function() {
var param_state = this.state[this.param_name];
var param_proposal = this.generate_proposal(param_state, this.prop_log_scale);
if(param_proposal < this.lower || param_proposal > this.upper) {
// Outside of limits of the parameter, reject the proposal
// and stay at the current state.
} else { // make a Metropolis step
var curr_log_dens = this.log_post();
this.state[this.param_name] = param_proposal;
var prop_log_dens = this.log_post();
var accept_prob = Math.exp(prop_log_dens - curr_log_dens);
if(accept_prob > Math.random()) {
// We do nothing as the state of param has already been changed to the proposal
if(this.is_adapting) this.acceptance_count++ ;
} else {
// revert state back to the old state of param
this.state[this.param_name] = param_state;
}
}
if(this.is_adapting) {
this.iterations_since_adaption ++;
if(this.iterations_since_adaption >= this.batch_size) { // then adapt
this.batch_count ++;
var log_sd_adjustment =
Math.min(this.max_adaptation,
this.initial_adaptation / Math.sqrt(this.batch_count));
if(this.acceptance_count / this.batch_size > this.target_accept_rate) {
this.prop_log_scale += log_sd_adjustment;
} else {
this.prop_log_scale -= log_sd_adjustment;
}
this.acceptance_count = 0;
this.iterations_since_adaption = 0;
}
}
return this.state[this.param_name];
};
OnedimMetropolisStepper.prototype.start_adaptation = function() {
this.is_adapting = true;
};
OnedimMetropolisStepper.prototype.stop_adaptation = function() {
this.is_adapting = false;
};
OnedimMetropolisStepper.prototype.info = function() {
return {
prop_log_scale: this.prop_log_scale,
is_adapting: this.is_adapting,
acceptance_count: this.acceptance_count,
iterations_since_adaption: this.iterations_since_adaption,
batch_count: this.batch_count
};
};
/**
* Function returning a Normal proposal.
*/
var normal_proposal = function(param_state, prop_log_scale) {
return rnorm(param_state , Math.exp(prop_log_scale));
};
/**
* @class
* @augments {OnedimMetropolisStepper}
* A "subclass" of OnedimMetropolisStepper making continous Normal proposals.
*/
var RealMetropolisStepper = function(params, state, log_post, options) {
OnedimMetropolisStepper.call(this, params, state, log_post, options, normal_proposal);
};
RealMetropolisStepper.prototype = Object.create(OnedimMetropolisStepper.prototype);
RealMetropolisStepper.prototype.constructor = RealMetropolisStepper;
/**
* Function returning a discretized Normal proposal.
*/
var discrete_normal_proposal = function(param_state, prop_log_scale) {
return Math.round(rnorm(param_state , Math.exp(prop_log_scale)));
};
/**
* @class
* @augments {OnedimMetropolisStepper}
* A "subclass" of OnedimMetropolisStepper making discretized Normal proposals.
*/
var IntMetropolisStepper = function(params, state, log_post, options) {
OnedimMetropolisStepper.call(this, params, state, log_post, options, discrete_normal_proposal);
};
IntMetropolisStepper.prototype = Object.create(OnedimMetropolisStepper.prototype);
IntMetropolisStepper.prototype.constructor = IntMetropolisStepper;
/**
* @class
* @implements {Stepper}
* Constructor for an object that implements the metropolis step in
* the Adaptive Metropolis-Within-Gibbs algorithm in "Examples of Adaptive MCMC"
* by Roberts and Rosenthal (2008) for possibly multidimensional arrays. That
* is, instead of just taking a step for a one-dimensional parameter like
* OnedimMetropolisStepper, this Stepper is responsible for taking steps
* for a multidimensional array. It's still pretty dumb and just takes
* one-dimensional steps for each parameter component, though.
* @param params - An object with a single parameter definition for a
* multidimensional parameter.
* @param state - an object containing the state of all parameters.
* @param log_post - A function that returns the log density that depends on the state.
* @param options - an object with options to the stepper.
* @param SubStepper - a constructor for the type of one dimensional Stepper to apply on
* all the components of the multidimensional parameter.
*/
var MultidimComponentMetropolisStepper = function(params, state, log_post, options, SubStepper) {
Stepper.call(this, params, state, log_post);
var param_names = Object.keys(this.params);
if(param_names.length != 1) {
throw "MultidimComponentMetropolisStepper can't handle more than one parameter.";
}
this.param_name = param_names[0];
var param = this.params[this.param_name];
this.lower = param.lower;
this.upper = param.upper;
this.dim = param.dim;
this.prop_log_scale = get_multidim_option("prop_log_scale", options, this.dim, 0);
this.batch_size = get_multidim_option("batch_size", options, this.dim, 50);
this.max_adaptation = get_multidim_option("max_adaptation", options, this.dim, 0.33);
this.initial_adaptation = get_multidim_option("initial_adaptation", options, this.dim, 1.0);
this.target_accept_rate = get_multidim_option("target_accept_rate", options, this.dim, 0.44);
this.is_adapting = get_multidim_option("is_adapting", options, this.dim, true);
// This hack below is a recursive function that creates an array of
// one dimensional steppers according to dim.
var create_substeppers =
function(dim, substate, log_post, prop_log_scale, batch_size, max_adaptation, initial_adaptation, target_accept_rate, is_adapting) {
var substeppers = [];
if(dim.length === 1) {
for(var i = 0; i < dim[0]; i++) {
var suboptions = {prop_log_scale: prop_log_scale[i], batch_size: batch_size[i],
max_adaptation: max_adaptation[i], initial_adaptation: initial_adaptation[i],
target_accept_rate: target_accept_rate[i], is_adapting: is_adapting[i]};
var subparam = {};
subparam[i] = deep_clone(param);
subparam[i].dim = [1]; // As this should now be a one-dim parameter
delete subparam[i].init; // As it sould not be needed
substeppers[i] = new SubStepper(subparam, substate, log_post, suboptions);
}
} else {
for(var i = 0; i < dim[0]; i++) {
substeppers[i] = create_substeppers(dim.slice(1), substate[i], log_post, prop_log_scale[i],
batch_size[i], max_adaptation[i], initial_adaptation[i], target_accept_rate[i], is_adapting[i]);
}
}
return substeppers;
};
this.substeppers = create_substeppers(this.dim, this.state[this.param_name], this.log_post,
this.prop_log_scale, this.batch_size, this.max_adaptation, this.initial_adaptation,
this.target_accept_rate, this.is_adapting);
};
MultidimComponentMetropolisStepper.prototype = Object.create(Stepper.prototype);
MultidimComponentMetropolisStepper.prototype.constructor = MultidimComponentMetropolisStepper;
MultidimComponentMetropolisStepper.prototype.step = function() {
// Go through the substeppers in a random order and call step() on them.
return nested_array_random_apply(this.substeppers, function(substepper) {return substepper.step(); });
};
MultidimComponentMetropolisStepper.prototype.start_adaptation = function() {
nested_array_apply(this.substeppers, function(substepper) {substepper.start_adaptation(); });
};
MultidimComponentMetropolisStepper.prototype.stop_adaptation = function() {
nested_array_apply(this.substeppers, function(substepper) {substepper.stop_adaptation(); });
};
MultidimComponentMetropolisStepper.prototype.info = function() {
return nested_array_apply(this.substeppers, function(substepper) {
return substepper.info();
});
};
/**
* @class
* @augments {MultidimComponentMetropolisStepper}
* A "subclass" of MultidimComponentMetropolisStepper making continous Normal proposals.
*/
var MultiRealComponentMetropolisStepper = function(params, state, log_post, options) {
MultidimComponentMetropolisStepper.call(this, params, state, log_post, options, RealMetropolisStepper);
};
MultiRealComponentMetropolisStepper.prototype = Object.create(MultidimComponentMetropolisStepper.prototype);
MultiRealComponentMetropolisStepper.prototype.constructor = MultiRealComponentMetropolisStepper;
/**
* @class
* @augments {MultidimComponentMetropolisStepper}
* A "subclass" of MultidimComponentMetropolisStepper making discretized Normal proposals.
*/
var MultiIntComponentMetropolisStepper = function(params, state, log_post, options) {
MultidimComponentMetropolisStepper.call(this, params, state, log_post, options, IntMetropolisStepper);
};
MultiIntComponentMetropolisStepper.prototype = Object.create(MultidimComponentMetropolisStepper.prototype);
MultiIntComponentMetropolisStepper.prototype.constructor = MultiIntComponentMetropolisStepper;
/**
* @class
* @implements {Stepper}
* Constructor for an object that implements a step for a binary parameter.
* This is done by evaluating the log posterior for both states of the
* parameter and then selecting a state randomly with probability relative
* to the posterior of each state.
* @param params - An object with a single parameter definition.
* @param state - an object containing the state of all parameters.
* @param log_post - A function that returns the log density that depends on the state.
* @param options - an object with options to the stepper.
*/
var BinaryStepper = function(params, state, log_post, options) {
Stepper.call(this, params, state, log_post);
var param_names = Object.keys(this.params);
if(param_names.length == 1) {
this.param_name = param_names[0];
} else {
throw "BinaryStepper can't handle more than one parameter.";
}
};
BinaryStepper.prototype = Object.create(Stepper.prototype);
BinaryStepper.prototype.constructor = BinaryStepper;
BinaryStepper.prototype.step = function() {
this.state[this.param_name] = 0;
var zero_log_dens = this.log_post();
this.state[this.param_name] = 1;
var one_log_dens = this.log_post();
var max_log_dens = Math.max(zero_log_dens, one_log_dens);
zero_log_dens -= max_log_dens;
one_log_dens -= max_log_dens;
var zero_prob = Math.exp(zero_log_dens - Math.log( Math.exp(zero_log_dens) + Math.exp(one_log_dens) ) );
if(Math.random() < zero_prob) {
this.state[this.param_name] = 0;
return 0;
} // else keep the param at 1 .
return 1;
};
/**
* @class
* @implements {Stepper}
* Just like MultidimComponentMetropolisStepper this Stepper takes a steps for
* a multidimensional parameter by updating each component in turn. The difference
* is that this stepper works on binary parameters.
* @param params - An object with a single parameter definition for a
* multidimensional parameter.
* @param state - an object containing the state of all parameters.
* @param log_post - A function that returns the log density that depends on the state.
* @param options - an object with options to the stepper.
*/
var BinaryComponentStepper = function(params, state, log_post, options) {
Stepper.call(this, params, state, log_post);
var param_names = Object.keys(this.params);
if(param_names.length == 1) {
this.param_name = param_names[0];
var param = this.params[this.param_name];
this.dim = param.dim;
} else {
throw "BinaryComponentStepper can't handle more than one parameter.";
}
var create_substeppers =
function(dim, substate, log_post) {
var substeppers = [];
var i;
if(dim.length === 1) {
for(i = 0; i < dim[0]; i++) {
var subparams = {};
subparams[i] = param;
substeppers[i] = new BinaryStepper(subparams, substate, log_post);
}
} else {
for(i = 0; i < dim[0]; i++) {
substeppers[i] = create_substeppers(dim.slice(1), substate[i], log_post);
}
}
return substeppers;
};
this.substeppers = create_substeppers(this.dim, this.state[this.param_name], this.log_post);
};
BinaryComponentStepper.prototype = Object.create(Stepper.prototype);
BinaryComponentStepper.prototype.constructor = BinaryComponentStepper;
BinaryComponentStepper.prototype.step = function() {
// Go through the substeppers in a random order and call step() on them.
return nested_array_random_apply(this.substeppers, function(substepper) {return substepper.step(); });
};
/**
* @class
* @implements {Stepper}
* This stepper can be responsible for taking a step for one or more parameters.
* For real and int parameters it takes Metropolis within Gibbs steps, and for
* binary parameters it does evaluates the posterior for both paramter values and
* randomly changes to a certain value proportionally to that value's posterior
* (this is also done for each parameter, so also a * within Gibbs approach).
* This stepper is also adaptive and can be efficient when the number of parameters
* are not too high and the correlations between parameters are low.
* @param params - An object with a one or more parameter definitions
* @param state - an object containing the state of all parameters.
* @param log_post - A function that returns the log density that depends on the state.
* @param options - an object with options to the stepper.
*/
var AmwgStepper = function(params, state, log_post, options) {
Stepper.call(this, params, state, log_post);
this.param_names = Object.keys(this.params);
this.substeppers = [];
for(var i = 0; i < this.param_names.length; i++) {
var param = params[this.param_names[i]];
var SelectStepper;
switch (param.type) {
case "real":
if(array_equal(param.dim, [1])) {
SelectStepper = RealMetropolisStepper;
} else {
SelectStepper = MultiRealComponentMetropolisStepper;
}
break;
case "int":
if(array_equal(param.dim, [1])) {
SelectStepper = IntMetropolisStepper;
} else {
SelectStepper = MultiIntComponentMetropolisStepper;
}
break;
case "binary":
if(array_equal(param.dim, [1])) {
SelectStepper = BinaryStepper;
} else {
SelectStepper = BinaryComponentStepper;
}
break;
default:
throw "AmwgStepper can't handle parameter " + this.param_names[i] +" with type " + param.type;
}
var param_object_wrap = {};
param_object_wrap[this.param_names[i]] = param;
options = options || {};
var param_options = options.params && options.params[this.param_names[i]] || {};
param_options.prop_log_scale = param_options.prop_log_scale || options.prop_log_scale;
param_options.batch_size = param_options.batch_size || options.batch_size;
param_options.max_adaptation = param_options.max_adaptation || options.max_adaptation;
param_options.initial_adaptation = param_options.initial_adaptation || options.initial_adaptation;
param_options.target_accept_rate = param_options.target_accept_rate || options.target_accept_rate;
param_options.is_adapting = param_options.is_adapting || options.is_adapting;
this.substeppers[i] = new SelectStepper(param_object_wrap, state, log_post, param_options);
}
};
AmwgStepper.prototype = Object.create(Stepper.prototype);
AmwgStepper.prototype.constructor = AmwgStepper;
AmwgStepper.prototype.step = function() {
shuffle_array(this.substeppers);
for(var i = 0; i < this.substeppers.length; i++) {
this.substeppers[i].step();
}
return this.state;
};
AmwgStepper.prototype.start_adaptation = function() {
for(var i = 0; i < this.substeppers.length; i++) {
this.substeppers[i].start_adaptation();
}
};
AmwgStepper.prototype.stop_adaptation = function() {
for(var i = 0; i < this.substeppers.length; i++) {
this.substeppers[i].stop_adaptation();
}
};
AmwgStepper.prototype.info = function() {
var info = {};
for(var i = 0; i < this.substeppers.length; i++) {
info[this.param_names[i]] = this.substeppers[i].info();
}
return info;
};
/////////// Sampler Functions //////////
////////////////////////////////////////
/**
* @interface
* While you could fit a model by pasting together Steppers, a
// Sampler is here is a convenience class where an instance of Sampler
// sets up the Steppers, checks the parameter definition,
// and manages the sampling. This here defines the Sampler "interface".
* @interface
* @param params - An object with parameter definitions, for example:
* {"mu": {"type": "real"}, "sigma": {"type": "real", "lower" = 0}}
* The parameter definitions doesn't have to be "complete" and properties
* left out (like lower and upper) will be filled in by defaults.
* @param log_post - A function with signature function(state, data). Here
* state will be an object representing the state with each parameter as a
* key and the parameter values as numbers or arrays. For example:
* {"mu": 3, "sigma": 1.5}. The data argument will be the same object as
* the data argument given below.
* @param data - an object that will be passed on to the log_post function
* when sampling.
* @param options - an object with options to the sampler.
*/
var Sampler = function(params, log_post, data, options) {
this.params = params;
this.data = data;
this.param_names = Object.keys(this.params);
// Setting default options if not passed through the options object
this.param_init_fun = get_option("param_init_fun", options, param_init_fixed);
var thinning_interval = get_option("thin", options, 1);
var params_to_monitor = get_option("monitor", options, null);
this.thin(thinning_interval);
this.monitor(params_to_monitor);
this.options = options;
// Completing the params and initializing the state.
this.params = complete_params(this.params, this.param_init_fun);
var state = {};
for(var i = 0; i < this.param_names.length; i++ ) {
state[this.param_names[i]] = this.params[this.param_names[i]].init;
}
this.log_post = function() {
return log_post(state, data);
};
// Running the log_post function once in case it further modifies the state
// for example adding derived quantities.
this.log_post();
this.state = state;
this.steppers = this.create_stepper_ensamble(this.params, this.state, this.log_post, this.options);
};
/** Should return a vector of steppers that when called
* should take a step in the parameter space.
*/
Sampler.prototype.create_stepper_ensamble = function(state, log_post){
throw "Every Sampler needs to implement create_stepper_ensamble()";
};
/** Returns an object with info about the state of the Sampler.
*/
Sampler.prototype.info = function() {
return {state: this.state, thin: this.thin, monitor: this.monitor,
steppers: this.steppers};
};
/** Takes a step in the parameter space. Returns the new space
* but also modifies the state in place.
*/
Sampler.prototype.step = function() {
shuffle_array(this.steppers);
for(var i = 0; i < this.steppers.length; i++) {
this.steppers[i].step();
}
if(Object.keys(this.state).length > Object.keys(this.params).length) {
// The state contains devived quantities (not only parameters) and we
// need to run the log_post once more in order to set the derived quantities
// for the final parameter state
this.log_post();
}
return this.state;
};
/**
* Takes n_iterations steps in the parameter space and returns them