-
Notifications
You must be signed in to change notification settings - Fork 1
/
python_bst.py
234 lines (210 loc) · 8.17 KB
/
python_bst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
class BSTnode(object):
"""
Representation of a node in a binary search tree.
Has a left child, right child, and key value, and stores its subtree size.
"""
def __init__(self, parent, t):
"""Create a new leaf with key t."""
self.key = t
self.parent = parent
self.left = None
self.right = None
self.size = 1
def update_stats(self):
"""Updates this node's size based on its children's sizes."""
self.size = (0 if self.left is None else self.left.size) + (0 if self.right is None else self.right.size)
def insert(self, t, NodeType):
"""Insert key t into the subtree rooted at this node (updating subtree size)."""
self.size += 1
if t < self.key:
if self.left is None:
self.left = NodeType(self, t)
return self.left
else:
return self.left.insert(t, NodeType)
else:
if self.right is None:
self.right = NodeType(self, t)
return self.right
else:
return self.right.insert(t, NodeType)
def find(self, t):
"""Return the node for key t if it is in this tree, or None otherwise."""
if t == self.key:
return self
elif t < self.key:
if self.left is None:
return None
else:
return self.left.find(t)
else:
if self.right is None:
return None
else:
return self.right.find(t)
def rank(self, t):
"""Return the number of keys <= t in the subtree rooted at this node."""
left_size = 0 if self.left is None else self.left.size
if t == self.key:
return left_size + 1
elif t < self.key:
if self.left is None:
return 0
else:
return self.left.rank(t)
else:
if self.right is None:
return left_size + 1
else:
return self.right.rank(t) + left_size + 1
def minimum(self):
"""Returns the node with the smallest key in the subtree rooted by this node."""
current = self
while current.left is not None:
current = current.left
return current
def successor(self):
"""Returns the node with the smallest key larger than this node's key, or None if this has the largest key in the tree."""
if self.right is not None:
return self.right.minimum()
current = self
while current.parent is not None and current.parent.right is current:
current = current.parent
return current.parent
def delete(self):
""""Delete this node from the tree."""
if self.left is None or self.right is None:
if self is self.parent.left:
self.parent.left = self.left or self.right
if self.parent.left is not None:
self.parent.left.parent = self.parent
else:
self.parent.right = self.left or self.right
if self.parent.right is not None:
self.parent.right.parent = self.parent
current = self.parent
while current.key is not None:
current.update_stats()
current = current.parent
return self
else:
s = self.successor()
self.key, s.key = s.key, self.key
return s.delete()
def check(self, lokey, hikey):
"""Checks that the subtree rooted at t is a valid BST and all keys are between (lokey, hikey)."""
if lokey is not None and self.key <= lokey:
raise "BST RI violation"
if hikey is not None and self.key >= hikey:
raise "BST RI violation"
if self.left is not None:
if self.left.parent is not self:
raise "BST RI violation"
self.left.check(lokey, self.key)
if self.right is not None:
if self.right.parent is not self:
raise "BST RI violation"
self.right.check(self.key, hikey)
if self.size != 1 + (0 if self.left is None else self.left.size) + (0 if self.right is None else self.right.size):
raise "BST RI violation"
def __repr__(self):
return "<BST Node, key:" + str(self.key) + ">"
class BST(object):
"""
Simple binary search tree implementation, augmented with subtree sizes.
This BST supports insert, find, and delete-min operations.
Each tree contains some (possibly 0) BSTnode objects, representing nodes,
and a pointer to the root.
"""
def __init__(self, NodeType=BSTnode):
self.root = None
self.NodeType = NodeType
self.psroot = self.NodeType(None, None)
def reroot(self):
self.root = self.psroot.left
def insert(self, t):
"""Insert key t into this BST, modifying it in-place."""
if self.root is None:
self.psroot.left = self.NodeType(self.psroot, t)
self.reroot()
return self.root
else:
return self.root.insert(t, self.NodeType)
def find(self, t):
"""Return the node for key t if is in the tree, or None otherwise."""
if self.root is None:
return None
else:
return self.root.find(t)
def rank(self, t):
"""The number of keys <= t in the tree."""
if self.root is None:
return 0
else:
return self.root.rank(t)
def delete(self, t):
"""Delete the node for key t if it is in the tree."""
node = self.find(t)
deleted = self.root.delete()
self.reroot()
return deleted
def check(self):
if self.root is not None:
self.root.check(None, None)
def __str__(self):
if self.root is None: return '<empty tree>'
def recurse(node):
if node is None: return [], 0, 0
label = str(node.key)
left_lines, left_pos, left_width = recurse(node.left)
right_lines, right_pos, right_width = recurse(node.right)
middle = max(right_pos + left_width - left_pos + 1, len(label), 2)
pos = left_pos + middle // 2
width = left_pos + middle + right_width - right_pos
while len(left_lines) < len(right_lines):
left_lines.append(' ' * left_width)
while len(right_lines) < len(left_lines):
right_lines.append(' ' * right_width)
if (middle - len(label)) % 2 == 1 and node.parent is not None and \
node is node.parent.left and len(label) < middle:
label += '.'
label = label.center(middle, '.')
if label[0] == '.': label = ' ' + label[1:]
if label[-1] == '.': label = label[:-1] + ' '
lines = [' ' * left_pos + label + ' ' * (right_width - right_pos),
' ' * left_pos + '/' + ' ' * (middle-2) +
'\\' + ' ' * (right_width - right_pos)] + \
[left_line + ' ' * (width - left_width - right_width) +
right_line
for left_line, right_line in zip(left_lines, right_lines)]
return lines, pos, width
return '\n'.join(recurse(self.root) [0])
test1 = range(0, 100, 10)
test2 = [31, 41, 59, 26, 53, 58, 97, 93, 23]
test3 = "algorithms"
def printsizes(node):
if node is None:
print "node is nil"
else:
print "node", node.key, "has a subtree of size", node.size
def test(args=None, BSTtype=BST):
import random, sys
if not args:
args = sys.argv[1:]
if not args:
print 'usage: %s <number-of-random-items | item item item ...>' % \
sys.argv[0]
sys.exit()
elif len(args) == 1:
items = (random.randrange(100) for i in xrange(int(args[0])))
else:
items = [int(i) for i in args]
tree = BSTtype()
#print tree
for item in items:
tree.insert(item)
print
#print tree
print tree
return tree
if __name__ == '__main__': test()