In an N by N square grid, each cell is either empty (0) or blocked (1).
A clear path from top-left to bottom-right has length k if and only if it is composed of cells C_1, C_2, ..., C_k such that:
- Adjacent cells C_i and C_{i+1} are connected 8-directionally (ie., they are different and share an edge or corner)
- C_1 is at location (0, 0) (ie. has value grid[0][0])
- C_k is at location (N-1, N-1) (ie. has value grid[N-1][N-1])
- If C_i is located at (r, c), then grid[r][c] is empty (ie. grid[r][c] == 0).
Return the length of the shortest such clear path from top-left to bottom-right. If such a path does not exist, return -1.
Example 1:
Input: [[0,1],[1,0]]
Output: 2
Example 2:
Input: [[0,0,0],[1,1,0],[1,1,0]]
Output: 4
Note:
1 <= grid.length == grid[0].length <= 100
grid[r][c] is 0 or 1