forked from huizhang0110/AON
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
66 lines (58 loc) · 2.24 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import cv2
import tensorflow as tf
from model_aon import get_init_op
import os
flags = tf.app.flags
flags.DEFINE_string('exp_dir', 'exp_log', '')
flags.DEFINE_string('mode', 'single', '')
flags.DEFINE_string('image_path', '20.jpg', '')
flags.DEFINE_string('tags_file', '/share/zhui/svt1/test.tags', '')
FLAGS = flags.FLAGS
def load_image(image_path):
image = cv2.imread(image_path)
image = cv2.resize(image, (100, 100))
image = image / 255.0
return image
def test_single_picture():
save_path = tf.train.latest_checkpoint(FLAGS.exp_dir)
meta_file_path = save_path + '.meta'
tf.reset_default_graph()
saver = tf.train.import_meta_graph(meta_file_path)
sess = tf.Session()
sess.run(get_init_op())
saver.restore(sess, save_path=save_path) # restore sess
graph = tf.get_default_graph()
global_step = graph.get_tensor_by_name('global_step:0')
image_placeholder = graph.get_tensor_by_name('input/Placeholder:0')
output_eval_text_tensor = graph.get_tensor_by_name('attention_decoder/ReduceJoin_1:0')
print('Restore graph from meta file {}'.format(meta_file_path))
print('Restore model from {} successful, step {}'.format(save_path, sess.run(global_step)))
if FLAGS.mode == 'single':
pred_text = sess.run(output_eval_text_tensor, feed_dict={
image_placeholder: load_image(FLAGS.image_path).reshape([1, 100, 100, 3])
})
print(pred_text)
elif FLAGS.mode == 'tags':
num_total = 0
num_correct = 0
with open(FLAGS.tags_file) as fo:
for line in fo:
try:
image_path, gt = line.strip().split(' ')
image = load_image(image_path)
except Exception as e:
print(e, image_path)
continue
pred_text = sess.run(output_eval_text_tensor, feed_dict={
image_placeholder: image.reshape([1, 100, 100, 3])
})
print('{} ==> {}'.format(gt, pred_text))
num_total += 1
num_correct += (gt.lower() == pred_text[0].decode())
print('Accu: {}/{}={}'.format(num_correct, num_total, num_correct/num_total))
print('{}'.format(save_path))
else:
raise ValueError('Unsupported mode: {}'.format(FLAGS.mode))
sess.close()
if __name__ == '__main__':
test_single_picture()