-
Notifications
You must be signed in to change notification settings - Fork 5
/
run_gts_univariate.py
292 lines (260 loc) · 10.8 KB
/
run_gts_univariate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
import os
import json
import torch
import torch.nn as nn
import argparse
import matplotlib
import numpy as np
from tensorboardX import SummaryWriter
import src.utils as utils
import src.datasets as datasets
import src.tensorboard_utils as tensorboard_utils
from src.model_utils import build_model
from src.evaluation import evaluate_gts_dataset
def train_step(batch, model, optimizer, step, config, device):
model.train()
def _set_lr(lr):
for g in optimizer.param_groups:
g["lr"] = lr
switch_temp = utils.get_temperature(step, config, "switch_")
extra_args = dict()
dur_temp = 1.0
if config["model"] == "REDSDS":
dur_temp = utils.get_temperature(step, config, "dur_")
extra_args = {"dur_temperature": dur_temp}
lr = utils.get_learning_rate(step, config)
xent_coeff = utils.get_cross_entropy_coef(step, config)
cont_ent_anneal = config["cont_ent_anneal"]
optimizer.zero_grad()
result = model(
batch["past_target"].to(device),
ctrl_inputs=dict(
feat_static_cat=batch["feat_static_cat"].to(device),
past_time_feat=batch["past_time_feat"].to(device),
),
switch_temperature=switch_temp,
cont_ent_anneal=cont_ent_anneal,
num_samples=config["num_samples"],
**extra_args,
)
objective = -1 * (
result[config["objective"]] + xent_coeff * result["crossent_regularizer"]
)
print(
step,
f"obj: {objective.item():.4f}",
f"lr: {lr:.6f}",
f"s-temp: {switch_temp:.2f}",
f"cross-ent: {xent_coeff}",
f"cont ent: {cont_ent_anneal}",
)
objective.backward()
nn.utils.clip_grad_norm_(model.parameters(), config["grad_clip_norm"])
_set_lr(lr)
optimizer.step()
result["objective"] = objective
result["lr"] = lr
result["switch_temperature"] = switch_temp
result["dur_temperature"] = dur_temp
result["xent_coeff"] = xent_coeff
return result
def plot_results(result, prefix=""):
original_inputs = result["inputs"][0].data.cpu().numpy()
reconstructed_inputs = result["reconstructions"][0].data.cpu().numpy()
most_likely_states = (
torch.argmax(result["log_gamma"], dim=-1)[0][0].data.cpu().numpy()
)
hidden_states = result["x_samples"][0].data.cpu().numpy()
discrete_states_lk = torch.exp(result["log_gamma"][0])[0].data.cpu().numpy()
true_seg = None
if "true_seg" in result.keys():
true_seg = result["true_seg"][0, : config["context_length"]].data.cpu().numpy()
matplotlib_fig = tensorboard_utils.show_time_series(
fig_size=(12, 4),
inputs=original_inputs,
reconstructed_inputs=reconstructed_inputs,
segmentation=most_likely_states,
true_segmentation=true_seg,
fig_title="input_reconstruction",
)
fig_numpy_array = tensorboard_utils.plot_to_image(matplotlib_fig)
summary.add_image(
f"{prefix}Reconstruction", fig_numpy_array, step, dataformats="HWC"
)
matplotlib_fig = tensorboard_utils.show_hidden_states(
fig_size=(12, 3), zt=hidden_states, segmentation=most_likely_states
)
fig_numpy_array = tensorboard_utils.plot_to_image(matplotlib_fig)
summary.add_image(
f"{prefix}Hidden_State_xt", fig_numpy_array, step, dataformats="HWC"
)
matplotlib_fig = tensorboard_utils.show_discrete_states(
fig_size=(12, 3),
discrete_states_lk=discrete_states_lk,
segmentation=most_likely_states,
)
fig_numpy_array = tensorboard_utils.plot_to_image(matplotlib_fig)
summary.add_image(
f"{prefix}Discrete_State_zt", fig_numpy_array, step, dataformats="HWC"
)
if __name__ == "__main__":
matplotlib.use("Agg")
# COMMAND-LINE ARGS
parser = argparse.ArgumentParser()
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("--config", type=str, help="Path to config file.")
group.add_argument("--ckpt", type=str, help="Path to checkpoint file.")
parser.add_argument(
"--device",
type=str,
default="cpu",
help="Which device to use, e.g., cpu, cuda:0, cuda:1, ...",
)
args = parser.parse_args()
# CONFIG
if args.ckpt:
ckpt = torch.load(args.ckpt, map_location="cpu")
config = ckpt["config"]
else:
config = utils.get_config_and_setup_dirs(args.config)
device = torch.device(args.device)
# DATA
train_dataset = datasets.GTSUnivariateDataset(
config["dataset"], batch_size=config["batch_size"]
)
val_dataset = datasets.GTSUnivariateDataset(
config["dataset"], batch_size=10, mode="val"
)
test_dataset = datasets.GTSUnivariateDataset(
config["dataset"], batch_size=10, mode="test"
)
# NOTE: batch_size is None because we are handling batching outselves
# in the dataset.
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=None, num_workers=0
)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=None)
# Replacing config values with dataset metadata values.
config["context_length"] = test_dataset.metadata["context_length"]
config["prediction_length"] = test_dataset.metadata["prediction_length"]
config["freq"] = test_dataset.metadata["freq"]
config["control"]["n_staticfeat"] = test_dataset.metadata["n_staticfeat"]
config["control"]["n_timefeat"] = test_dataset.metadata["n_timefeat"]
train_gen = iter(train_loader)
val_gen = iter(val_loader)
# MODEL
model = build_model(config=config)
start_step = 1
if args.ckpt:
model.load_state_dict(ckpt["model"])
start_step = ckpt["step"] + 1
model = model.to(device)
for n, p in model.named_parameters():
print(n, p.size())
# TRAIN AND EVALUATE
optimizer = torch.optim.Adam(
model.parameters(), weight_decay=config["weight_decay"]
)
if args.ckpt:
optimizer.load_state_dict(ckpt["optimizer"])
summary = SummaryWriter(logdir=config["log_dir"])
all_metrics = {"CRPS": [], "MSE": [], "step": []}
for step in range(start_step, config["num_steps"] + 1):
try:
train_batch = next(train_gen)
except StopIteration:
train_gen = iter(train_loader)
train_result = train_step(train_batch, model, optimizer, step, config, device)
if step % config["save_steps"] == 0 or step == config["num_steps"]:
model_path = os.path.join(config["model_dir"], f"model_{step}.pt")
torch.save(
{
"step": step,
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"config": config,
},
model_path,
)
if step % config["log_steps"] == 0 or step == config["num_steps"]:
try:
val_batch = next(val_gen)
except StopIteration:
val_gen = iter(val_loader)
summary_items = {
"params/learning_rate": train_result["lr"],
"params/switch_temperature": train_result["switch_temperature"],
"params/dur_temperature": train_result["dur_temperature"],
"params/cross_entropy_coef": train_result["xent_coeff"],
"elbo/training": train_result[config["objective"]],
"xent/training": train_result["crossent_regularizer"],
}
plot_results(train_result)
if step == config["num_steps"]:
# Evaluate Forecast
agg_metrics = evaluate_gts_dataset(
test_dataset,
model,
device=device,
num_samples=config["forecast"]["num_samples"],
deterministic_z=config["forecast"]["deterministic_z"],
deterministic_x=config["forecast"]["deterministic_x"],
deterministic_y=config["forecast"]["deterministic_y"],
max_len=np.inf,
batch_size=100,
)
summary_items["metrics/test_mse"] = agg_metrics["MSE"]
summary_items["metrics/CRPS"] = agg_metrics["mean_wQuantileLoss"]
all_metrics["step"].append(step)
all_metrics["CRPS"].append(agg_metrics["mean_wQuantileLoss"])
all_metrics["MSE"].append(agg_metrics["MSE"])
# Forecast and Plot
ctx_len = config["context_length"]
past_target = val_batch["past_target"][0:1, :ctx_len]
feat_static_cat = val_batch["feat_static_cat"][0:1]
past_time_feat = val_batch["past_time_feat"][0:1, :ctx_len]
future_time_feat = val_batch["past_time_feat"][0:1, ctx_len:]
rec_with_forecast = (
model.predict(
past_target.to(device),
ctrl_inputs=dict(
feat_static_cat=feat_static_cat.to(device),
past_time_feat=past_time_feat.to(device),
future_time_feat=future_time_feat.to(device),
),
num_samples=config["forecast"]["num_samples"],
deterministic_z=config["forecast"]["deterministic_z"],
deterministic_x=config["forecast"]["deterministic_x"],
deterministic_y=config["forecast"]["deterministic_y"],
)["rec_n_forecast"]
.data.cpu()
.numpy()[:, 0, ...]
)
complete_ts = val_batch["past_target"][0:1]
matplotlib_fig = tensorboard_utils.show_time_series_forecast(
fig_size=(12, 4),
inputs=complete_ts.data.cpu().numpy()[0],
rec_with_forecast=rec_with_forecast,
context_length=config["context_length"],
prediction_length=config["prediction_length"],
fig_title="forecast",
)
fig_numpy_array = tensorboard_utils.plot_to_image(matplotlib_fig)
summary.add_image("Forecast", fig_numpy_array, step, dataformats="HWC")
for k, v in summary_items.items():
summary.add_scalar(k, v, step)
summary.flush()
with open(os.path.join(config["log_dir"], "metrics.json"), "w") as fp:
json.dump(all_metrics, fp)