-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlmTraining.py
57 lines (46 loc) · 1.57 KB
/
mlmTraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
from transformers import DistilBertTokenizerFast
from transformers import DistilBertForMaskedLM
from transformers import LineByLineTextDataset
from transformers import DataCollatorForLanguageModeling
from transformers import Trainer, TrainingArguments
basePath = './'
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-cased')
model = DistilBertForMaskedLM.from_pretrained('distilbert-base-cased')
train_dataset = LineByLineTextDataset(
tokenizer=tokenizer,
file_path=basePath + 'data/SNIPS/experiments/train/adversarialAdaptiveBG_train.tsv',
block_size=128,
)
val_dataset = LineByLineTextDataset(
tokenizer=tokenizer,
file_path= basePath + 'data/SNIPS/experiments/dev/aadversarialAdaptiveDev_BG.tsv',
block_size=128,
)
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm=True, mlm_probability=0.15
)
training_args = TrainingArguments(
output_dir= basePath + 'bin/SNIPS/MLM_Adver_Adap_BG/',
num_train_epochs=10,
per_device_train_batch_size=128,
save_steps=20,
evaluation_strategy="steps",
fp16=True,
weight_decay=0.003,
load_best_model_at_end=True,
greater_is_better=False,
save_total_limit = 1,
logging_dir= basePath + 'logs/SNIPS/MLM_Adver_Adap_BG/',
metric_for_best_model="eval_loss",
prediction_loss_only=True
)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=val_dataset
)
trainer.train()
trainer.save_model(basePath + 'bin/SNIPS/MLM_Adver_Adap_BG/best/')