-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtestMLP.m
33 lines (30 loc) · 1.16 KB
/
testMLP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
function [correctlyClassified, classificationErrors] = validateMLP(activationFunction, Weights, inputValues, labels,bias)
% Validate the MLP using the
% validation set.
%
% INPUT:
% activationFunction : Activation function to be used
% Weights : Weights of the Layers
% inputValues : Input values for training (784 x 10000).
% labels : Labels for validation (1 x 10000).
% bias : Weather to use bias
%
% OUTPUT:
% correctlyClassified : Number of correctly classified values.
% classificationErrors : Number of classification errors.
%
testSetSize = size(inputValues, 2);
classificationErrors = 0;
correctlyClassified = 0;
for n = 1: testSetSize
inputVector = inputValues(:, n);
outputVector = evaluateMLP(activationFunction, Weights, inputVector, bias);
[m class] = max(outputVector);
%class = decisionRule(outputVector);
if class == labels(n) + 1
correctlyClassified = correctlyClassified + 1;
else
classificationErrors = classificationErrors + 1;
end;
end
end