-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path15_Count_Good_Triplets_in_an_Array.cpp
100 lines (78 loc) · 3 KB
/
15_Count_Good_Triplets_in_an_Array.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
// 2179. Count Good Triplets in an Array
// You are given two 0-indexed arrays nums1 and nums2 of length n, both of which are permutations of [0, 1, ..., n - 1].
// A good triplet is a set of 3 distinct values which are present in increasing order by position both in nums1 and nums2. In other words, if we consider pos1v as the index of the value v in nums1 and pos2v as the index of the value v in nums2, then a good triplet will be a set (x, y, z) where 0 <= x, y, z <= n - 1, such that pos1x < pos1y < pos1z and pos2x < pos2y < pos2z.
// Return the total number of good triplets.
// Example 1:
// Input: nums1 = [2,0,1,3], nums2 = [0,1,2,3]
// Output: 1
// Explanation:
// There are 4 triplets (x,y,z) such that pos1x < pos1y < pos1z. They are (2,0,1), (2,0,3), (2,1,3), and (0,1,3).
// Out of those triplets, only the triplet (0,1,3) satisfies pos2x < pos2y < pos2z. Hence, there is only 1 good triplet.
// Example 2:
// Input: nums1 = [4,0,1,3,2], nums2 = [4,1,0,2,3]
// Output: 4
// Explanation: The 4 good triplets are (4,0,3), (4,0,2), (4,1,3), and (4,1,2).
// Constraints:
// n == nums1.length == nums2.length
// 3 <= n <= 105
// 0 <= nums1[i], nums2[i] <= n - 1
// nums1 and nums2 are permutations of [0, 1, ..., n - 1].
class Solution
{
public:
using ll = long long;
vector<ll> bit1, bit2;
int n;
void update(vector<ll> &bit, int i, ll val)
{
for (++i; i <= n; i += (i & -i))
bit[i] += val;
}
ll query(const vector<ll> &bit, int i)
{
ll res = 0;
for (++i; i > 0; i -= (i & -i))
res += bit[i];
return res;
}
long long goodTriplets(vector<int> &nums1, vector<int> &nums2)
{
n = nums1.size();
vector<int> pos(n);
for (int i = 0; i < n; ++i)
pos[nums2[i]] = i;
for (int i = 0; i < n; ++i)
nums1[i] = pos[nums1[i]];
bit1.assign(n + 2, 0);
bit2.assign(n + 2, 0);
ll ans = 0;
for (int i = n - 1; i >= 0; --i)
{
int x = nums1[i];
ll val = query(bit1, n - 1) - query(bit1, x);
ll trip = query(bit2, n - 1) - query(bit2, x);
ans += trip;
update(bit2, x, val);
update(bit1, x, 1);
}
return ans;
}
};
/*
This solution uses Binary Indexed Tree (BIT/Fenwick Tree) to efficiently count good triplets.
Algorithm explanation:
1. First, we create a position mapping for nums2 to convert nums1 into relative positions.
2. We use two BITs:
- bit1: Counts elements to the right
- bit2: Stores number of possible pairs to the right
3. We iterate from right to left:
- For each element, we count larger elements to its right (val)
- Count number of triplets possible with current element (trip)
- Update BITs accordingly
Time Complexity: O(n log n) where n is the length of input arrays
- BIT operations (update and query) take O(log n)
- We perform these operations O(n) times
Space Complexity: O(n)
- Two BIT arrays of size n+2
- Position array of size n
*/