Alexander Powers
This project explores different network architectures that leverage weight sharing to improve performance on multiple tasks.
The CIFAR100 dataset consists of RGB images, fine labels(100 classes), and coarse labels(20 classes). Each fine label class is a proper subset of a coarse label class (i.e. one fine label can't have two coarse labels and vice versa).
input_image --> conv_layers --> fc_layers --> fine_label
input_image --> conv_layers --> fc_layers --> coarse_label
/--> fc_layers --> fine_label
input_image --> conv_layers
\--> fc_layers --> coarse_label
input_image ----> conv_layers ----> fc_layers_1
\
concat -> fc_layers_2 -> fine_label
/
input_image -> conv_layers -> fc_layers -> coarse_label
input_image ----> conv_layers ----> fc_layers_1
\
concat -> fc_layers_2 -> coarse_label
/
input_image -> conv_layers -> fc_layers -> fine_label
/ -------------> fc_layers_1
/ \
input_image -> conv_layers concat -> fc_layers_2 -> fine_label
\ /
\-> fc_layers -> coarse_label
/ -------------> fc_layers_1
/ \
input_image -> conv_layers concat -> fc_layers_2 -> coarse_label
\ /
\-> fc_layers -> fine_label