-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy pathbtree_benchmark.cc
764 lines (655 loc) · 27.6 KB
/
btree_benchmark.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <algorithm>
#include <functional>
#include <map>
#include <numeric>
#include <random>
#include <set>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "benchmark/benchmark.h"
#include "absl/algorithm/container.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/container/btree_map.h"
#include "absl/container/btree_set.h"
#include "absl/container/btree_test.h"
#include "absl/container/flat_hash_map.h"
#include "absl/container/flat_hash_set.h"
#include "absl/container/internal/hashtable_debug.h"
#include "absl/hash/hash.h"
#include "absl/log/log.h"
#include "absl/memory/memory.h"
#include "absl/random/random.h"
#include "absl/strings/cord.h"
#include "absl/strings/str_format.h"
#include "absl/time/time.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
namespace {
constexpr size_t kBenchmarkValues = 1 << 20;
// How many times we add and remove sub-batches in one batch of *AddRem
// benchmarks.
constexpr size_t kAddRemBatchSize = 1 << 2;
// Generates n values in the range [0, 4 * n].
template <typename V>
std::vector<V> GenerateValues(int n) {
constexpr int kSeed = 23;
return GenerateValuesWithSeed<V>(n, 4 * n, kSeed);
}
// Benchmark insertion of values into a container.
template <typename T>
void BM_InsertImpl(benchmark::State& state, bool sorted) {
using V = typename remove_pair_const<typename T::value_type>::type;
typename KeyOfValue<typename T::key_type, V>::type key_of_value;
std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
if (sorted) {
std::sort(values.begin(), values.end());
}
T container(values.begin(), values.end());
// Remove and re-insert 10% of the keys per batch.
const int batch_size = (kBenchmarkValues + 9) / 10;
while (state.KeepRunningBatch(batch_size)) {
state.PauseTiming();
const auto i = static_cast<int>(state.iterations());
for (int j = i; j < i + batch_size; j++) {
int x = j % kBenchmarkValues;
container.erase(key_of_value(values[x]));
}
state.ResumeTiming();
for (int j = i; j < i + batch_size; j++) {
int x = j % kBenchmarkValues;
container.insert(values[x]);
}
}
}
template <typename T>
void BM_Insert(benchmark::State& state) {
BM_InsertImpl<T>(state, false);
}
template <typename T>
void BM_InsertSorted(benchmark::State& state) {
BM_InsertImpl<T>(state, true);
}
// Benchmark inserting the first few elements in a container. In b-tree, this is
// when the root node grows.
template <typename T>
void BM_InsertSmall(benchmark::State& state) {
using V = typename remove_pair_const<typename T::value_type>::type;
const int kSize = 8;
std::vector<V> values = GenerateValues<V>(kSize);
T container;
while (state.KeepRunningBatch(kSize)) {
for (int i = 0; i < kSize; ++i) {
benchmark::DoNotOptimize(container.insert(values[i]));
}
state.PauseTiming();
// Do not measure the time it takes to clear the container.
container.clear();
state.ResumeTiming();
}
}
template <typename T>
void BM_LookupImpl(benchmark::State& state, bool sorted) {
using V = typename remove_pair_const<typename T::value_type>::type;
typename KeyOfValue<typename T::key_type, V>::type key_of_value;
std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
if (sorted) {
std::sort(values.begin(), values.end());
}
T container(values.begin(), values.end());
while (state.KeepRunning()) {
int idx = state.iterations() % kBenchmarkValues;
benchmark::DoNotOptimize(container.find(key_of_value(values[idx])));
}
}
// Benchmark lookup of values in a container.
template <typename T>
void BM_Lookup(benchmark::State& state) {
BM_LookupImpl<T>(state, false);
}
// Benchmark lookup of values in a full container, meaning that values
// are inserted in-order to take advantage of biased insertion, which
// yields a full tree.
template <typename T>
void BM_FullLookup(benchmark::State& state) {
BM_LookupImpl<T>(state, true);
}
// Benchmark erasing values from a container.
template <typename T>
void BM_Erase(benchmark::State& state) {
using V = typename remove_pair_const<typename T::value_type>::type;
typename KeyOfValue<typename T::key_type, V>::type key_of_value;
std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
T container(values.begin(), values.end());
// Remove and re-insert 10% of the keys per batch.
const int batch_size = (kBenchmarkValues + 9) / 10;
while (state.KeepRunningBatch(batch_size)) {
const int i = state.iterations();
for (int j = i; j < i + batch_size; j++) {
int x = j % kBenchmarkValues;
container.erase(key_of_value(values[x]));
}
state.PauseTiming();
for (int j = i; j < i + batch_size; j++) {
int x = j % kBenchmarkValues;
container.insert(values[x]);
}
state.ResumeTiming();
}
}
// Benchmark erasing multiple values from a container.
template <typename T>
void BM_EraseRange(benchmark::State& state) {
using V = typename remove_pair_const<typename T::value_type>::type;
typename KeyOfValue<typename T::key_type, V>::type key_of_value;
std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
T container(values.begin(), values.end());
// Remove and re-insert 10% of the keys per batch.
const int batch_size = (kBenchmarkValues + 9) / 10;
while (state.KeepRunningBatch(batch_size)) {
const int i = state.iterations();
const int start_index = i % kBenchmarkValues;
state.PauseTiming();
{
std::vector<V> removed;
removed.reserve(batch_size);
auto itr = container.find(key_of_value(values[start_index]));
auto start = itr;
for (int j = 0; j < batch_size; j++) {
if (itr == container.end()) {
state.ResumeTiming();
container.erase(start, itr);
state.PauseTiming();
itr = container.begin();
start = itr;
}
removed.push_back(*itr++);
}
state.ResumeTiming();
container.erase(start, itr);
state.PauseTiming();
container.insert(removed.begin(), removed.end());
}
state.ResumeTiming();
}
}
// Predicate that erases every other element. We can't use a lambda because
// C++11 doesn't support generic lambdas.
// TODO(b/207389011): consider adding benchmarks that remove different fractions
// of keys (e.g. 10%, 90%).
struct EraseIfPred {
uint64_t i = 0;
template <typename T>
bool operator()(const T&) {
return ++i % 2;
}
};
// Benchmark erasing multiple values from a container with a predicate.
template <typename T>
void BM_EraseIf(benchmark::State& state) {
using V = typename remove_pair_const<typename T::value_type>::type;
std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
// Removes half of the keys per batch.
const int batch_size = (kBenchmarkValues + 1) / 2;
EraseIfPred pred;
while (state.KeepRunningBatch(batch_size)) {
state.PauseTiming();
{
T container(values.begin(), values.end());
state.ResumeTiming();
erase_if(container, pred);
benchmark::DoNotOptimize(container);
state.PauseTiming();
}
state.ResumeTiming();
}
}
// Benchmark steady-state insert (into first half of range) and remove (from
// second half of range), treating the container approximately like a queue with
// log-time access for all elements. This benchmark does not test the case where
// insertion and removal happen in the same region of the tree. This benchmark
// counts two value constructors.
template <typename T>
void BM_QueueAddRem(benchmark::State& state) {
using V = typename remove_pair_const<typename T::value_type>::type;
typename KeyOfValue<typename T::key_type, V>::type key_of_value;
ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance");
T container;
const size_t half = kBenchmarkValues / 2;
std::vector<int> remove_keys(half);
std::vector<int> add_keys(half);
// We want to do the exact same work repeatedly, and the benchmark can end
// after a different number of iterations depending on the speed of the
// individual run so we use a large batch size here and ensure that we do
// deterministic work every batch.
while (state.KeepRunningBatch(half * kAddRemBatchSize)) {
state.PauseTiming();
container.clear();
for (size_t i = 0; i < half; ++i) {
remove_keys[i] = i;
add_keys[i] = i;
}
constexpr int kSeed = 5;
std::mt19937_64 rand(kSeed);
std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
std::shuffle(add_keys.begin(), add_keys.end(), rand);
// Note needs lazy generation of values.
Generator<V> g(kBenchmarkValues * kAddRemBatchSize);
for (size_t i = 0; i < half; ++i) {
container.insert(g(add_keys[i]));
container.insert(g(half + remove_keys[i]));
}
// There are three parts each of size "half":
// 1 is being deleted from [offset - half, offset)
// 2 is standing [offset, offset + half)
// 3 is being inserted into [offset + half, offset + 2 * half)
size_t offset = 0;
for (size_t i = 0; i < kAddRemBatchSize; ++i) {
std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
std::shuffle(add_keys.begin(), add_keys.end(), rand);
offset += half;
state.ResumeTiming();
for (size_t idx = 0; idx < half; ++idx) {
container.erase(key_of_value(g(offset - half + remove_keys[idx])));
container.insert(g(offset + half + add_keys[idx]));
}
state.PauseTiming();
}
state.ResumeTiming();
}
}
// Mixed insertion and deletion in the same range using pre-constructed values.
template <typename T>
void BM_MixedAddRem(benchmark::State& state) {
using V = typename remove_pair_const<typename T::value_type>::type;
typename KeyOfValue<typename T::key_type, V>::type key_of_value;
ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance");
T container;
// Create two random shuffles
std::vector<int> remove_keys(kBenchmarkValues);
std::vector<int> add_keys(kBenchmarkValues);
// We want to do the exact same work repeatedly, and the benchmark can end
// after a different number of iterations depending on the speed of the
// individual run so we use a large batch size here and ensure that we do
// deterministic work every batch.
while (state.KeepRunningBatch(kBenchmarkValues * kAddRemBatchSize)) {
state.PauseTiming();
container.clear();
constexpr int kSeed = 7;
std::mt19937_64 rand(kSeed);
std::vector<V> values = GenerateValues<V>(kBenchmarkValues * 2);
// Insert the first half of the values (already in random order)
container.insert(values.begin(), values.begin() + kBenchmarkValues);
// Insert the first half of the values (already in random order)
for (size_t i = 0; i < kBenchmarkValues; ++i) {
// remove_keys and add_keys will be swapped before each round,
// therefore fill add_keys here w/ the keys being inserted, so
// they'll be the first to be removed.
remove_keys[i] = i + kBenchmarkValues;
add_keys[i] = i;
}
for (size_t i = 0; i < kAddRemBatchSize; ++i) {
remove_keys.swap(add_keys);
std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
std::shuffle(add_keys.begin(), add_keys.end(), rand);
state.ResumeTiming();
for (size_t idx = 0; idx < kBenchmarkValues; ++idx) {
container.erase(key_of_value(values[remove_keys[idx]]));
container.insert(values[add_keys[idx]]);
}
state.PauseTiming();
}
state.ResumeTiming();
}
}
// Insertion at end, removal from the beginning. This benchmark
// counts two value constructors.
// TODO(ezb): we could add a GenerateNext version of generator that could reduce
// noise for string-like types.
template <typename T>
void BM_Fifo(benchmark::State& state) {
using V = typename remove_pair_const<typename T::value_type>::type;
T container;
// Need lazy generation of values as state.max_iterations is large.
Generator<V> g(kBenchmarkValues + state.max_iterations);
for (int i = 0; i < kBenchmarkValues; i++) {
container.insert(g(i));
}
while (state.KeepRunning()) {
container.erase(container.begin());
container.insert(container.end(), g(state.iterations() + kBenchmarkValues));
}
}
// Iteration (forward) through the tree
template <typename T>
void BM_FwdIter(benchmark::State& state) {
using V = typename remove_pair_const<typename T::value_type>::type;
using R = typename T::value_type const*;
std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
T container(values.begin(), values.end());
auto iter = container.end();
R r = nullptr;
while (state.KeepRunning()) {
if (iter == container.end()) iter = container.begin();
r = &(*iter);
++iter;
}
benchmark::DoNotOptimize(r);
}
// Benchmark random range-construction of a container.
template <typename T>
void BM_RangeConstructionImpl(benchmark::State& state, bool sorted) {
using V = typename remove_pair_const<typename T::value_type>::type;
std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
if (sorted) {
std::sort(values.begin(), values.end());
}
{
T container(values.begin(), values.end());
}
while (state.KeepRunning()) {
T container(values.begin(), values.end());
benchmark::DoNotOptimize(container);
}
}
template <typename T>
void BM_InsertRangeRandom(benchmark::State& state) {
BM_RangeConstructionImpl<T>(state, false);
}
template <typename T>
void BM_InsertRangeSorted(benchmark::State& state) {
BM_RangeConstructionImpl<T>(state, true);
}
#define STL_ORDERED_TYPES(value) \
using stl_set_##value = std::set<value>; \
using stl_map_##value = std::map<value, intptr_t>; \
using stl_multiset_##value = std::multiset<value>; \
using stl_multimap_##value = std::multimap<value, intptr_t>
using StdString = std::string;
STL_ORDERED_TYPES(int32_t);
STL_ORDERED_TYPES(int64_t);
STL_ORDERED_TYPES(StdString);
STL_ORDERED_TYPES(Cord);
STL_ORDERED_TYPES(Time);
#define STL_UNORDERED_TYPES(value) \
using stl_unordered_set_##value = std::unordered_set<value>; \
using stl_unordered_map_##value = std::unordered_map<value, intptr_t>; \
using flat_hash_set_##value = flat_hash_set<value>; \
using flat_hash_map_##value = flat_hash_map<value, intptr_t>; \
using stl_unordered_multiset_##value = std::unordered_multiset<value>; \
using stl_unordered_multimap_##value = \
std::unordered_multimap<value, intptr_t>
#define STL_UNORDERED_TYPES_CUSTOM_HASH(value, hash) \
using stl_unordered_set_##value = std::unordered_set<value, hash>; \
using stl_unordered_map_##value = std::unordered_map<value, intptr_t, hash>; \
using flat_hash_set_##value = flat_hash_set<value, hash>; \
using flat_hash_map_##value = flat_hash_map<value, intptr_t, hash>; \
using stl_unordered_multiset_##value = std::unordered_multiset<value, hash>; \
using stl_unordered_multimap_##value = \
std::unordered_multimap<value, intptr_t, hash>
STL_UNORDERED_TYPES_CUSTOM_HASH(Cord, absl::Hash<absl::Cord>);
STL_UNORDERED_TYPES(int32_t);
STL_UNORDERED_TYPES(int64_t);
STL_UNORDERED_TYPES(StdString);
STL_UNORDERED_TYPES_CUSTOM_HASH(Time, absl::Hash<absl::Time>);
#define BTREE_TYPES(value) \
using btree_256_set_##value = \
btree_set<value, std::less<value>, std::allocator<value>>; \
using btree_256_map_##value = \
btree_map<value, intptr_t, std::less<value>, \
std::allocator<std::pair<const value, intptr_t>>>; \
using btree_256_multiset_##value = \
btree_multiset<value, std::less<value>, std::allocator<value>>; \
using btree_256_multimap_##value = \
btree_multimap<value, intptr_t, std::less<value>, \
std::allocator<std::pair<const value, intptr_t>>>
BTREE_TYPES(int32_t);
BTREE_TYPES(int64_t);
BTREE_TYPES(StdString);
BTREE_TYPES(Cord);
BTREE_TYPES(Time);
#define MY_BENCHMARK4(type, func) \
void BM_##type##_##func(benchmark::State& state) { BM_##func<type>(state); } \
BENCHMARK(BM_##type##_##func)
#define MY_BENCHMARK3_STL(type) \
MY_BENCHMARK4(type, Insert); \
MY_BENCHMARK4(type, InsertSorted); \
MY_BENCHMARK4(type, InsertSmall); \
MY_BENCHMARK4(type, Lookup); \
MY_BENCHMARK4(type, FullLookup); \
MY_BENCHMARK4(type, Erase); \
MY_BENCHMARK4(type, EraseRange); \
MY_BENCHMARK4(type, QueueAddRem); \
MY_BENCHMARK4(type, MixedAddRem); \
MY_BENCHMARK4(type, Fifo); \
MY_BENCHMARK4(type, FwdIter); \
MY_BENCHMARK4(type, InsertRangeRandom); \
MY_BENCHMARK4(type, InsertRangeSorted)
#define MY_BENCHMARK3(type) \
MY_BENCHMARK4(type, EraseIf); \
MY_BENCHMARK3_STL(type)
#define MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type) \
MY_BENCHMARK3_STL(stl_##type); \
MY_BENCHMARK3_STL(stl_unordered_##type); \
MY_BENCHMARK3(btree_256_##type)
#define MY_BENCHMARK2(type) \
MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type); \
MY_BENCHMARK3(flat_hash_##type)
// Define MULTI_TESTING to see benchmarks for multi-containers also.
//
// You can use --copt=-DMULTI_TESTING.
#ifdef MULTI_TESTING
#define MY_BENCHMARK(type) \
MY_BENCHMARK2(set_##type); \
MY_BENCHMARK2(map_##type); \
MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multiset_##type); \
MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multimap_##type)
#else
#define MY_BENCHMARK(type) \
MY_BENCHMARK2(set_##type); \
MY_BENCHMARK2(map_##type)
#endif
MY_BENCHMARK(int32_t);
MY_BENCHMARK(int64_t);
MY_BENCHMARK(StdString);
MY_BENCHMARK(Cord);
MY_BENCHMARK(Time);
// Define a type whose size and cost of moving are independently customizable.
// When sizeof(value_type) increases, we expect btree to no longer have as much
// cache-locality advantage over STL. When cost of moving increases, we expect
// btree to actually do more work than STL because it has to move values around
// and STL doesn't have to.
template <int Size, int Copies>
struct BigType {
BigType() : BigType(0) {}
explicit BigType(int x) { std::iota(values.begin(), values.end(), x); }
void Copy(const BigType& other) {
for (int i = 0; i < Size && i < Copies; ++i) values[i] = other.values[i];
// If Copies > Size, do extra copies.
for (int i = Size, idx = 0; i < Copies; ++i) {
int64_t tmp = other.values[idx];
benchmark::DoNotOptimize(tmp);
idx = idx + 1 == Size ? 0 : idx + 1;
}
}
BigType(const BigType& other) { Copy(other); }
BigType& operator=(const BigType& other) {
Copy(other);
return *this;
}
// Compare only the first Copies elements if Copies is less than Size.
bool operator<(const BigType& other) const {
return std::lexicographical_compare(
values.begin(), values.begin() + std::min(Size, Copies),
other.values.begin(), other.values.begin() + std::min(Size, Copies));
}
bool operator==(const BigType& other) const {
return std::equal(values.begin(), values.begin() + std::min(Size, Copies),
other.values.begin());
}
// Support absl::Hash.
template <typename State>
friend State AbslHashValue(State h, const BigType& b) {
for (int i = 0; i < Size && i < Copies; ++i)
h = State::combine(std::move(h), b.values[i]);
return h;
}
std::array<int64_t, Size> values;
};
#define BIG_TYPE_BENCHMARKS(SIZE, COPIES) \
using stl_set_size##SIZE##copies##COPIES = std::set<BigType<SIZE, COPIES>>; \
using stl_map_size##SIZE##copies##COPIES = \
std::map<BigType<SIZE, COPIES>, intptr_t>; \
using stl_multiset_size##SIZE##copies##COPIES = \
std::multiset<BigType<SIZE, COPIES>>; \
using stl_multimap_size##SIZE##copies##COPIES = \
std::multimap<BigType<SIZE, COPIES>, intptr_t>; \
using stl_unordered_set_size##SIZE##copies##COPIES = \
std::unordered_set<BigType<SIZE, COPIES>, \
absl::Hash<BigType<SIZE, COPIES>>>; \
using stl_unordered_map_size##SIZE##copies##COPIES = \
std::unordered_map<BigType<SIZE, COPIES>, intptr_t, \
absl::Hash<BigType<SIZE, COPIES>>>; \
using flat_hash_set_size##SIZE##copies##COPIES = \
flat_hash_set<BigType<SIZE, COPIES>>; \
using flat_hash_map_size##SIZE##copies##COPIES = \
flat_hash_map<BigType<SIZE, COPIES>, intptr_t>; \
using stl_unordered_multiset_size##SIZE##copies##COPIES = \
std::unordered_multiset<BigType<SIZE, COPIES>, \
absl::Hash<BigType<SIZE, COPIES>>>; \
using stl_unordered_multimap_size##SIZE##copies##COPIES = \
std::unordered_multimap<BigType<SIZE, COPIES>, intptr_t, \
absl::Hash<BigType<SIZE, COPIES>>>; \
using btree_256_set_size##SIZE##copies##COPIES = \
btree_set<BigType<SIZE, COPIES>>; \
using btree_256_map_size##SIZE##copies##COPIES = \
btree_map<BigType<SIZE, COPIES>, intptr_t>; \
using btree_256_multiset_size##SIZE##copies##COPIES = \
btree_multiset<BigType<SIZE, COPIES>>; \
using btree_256_multimap_size##SIZE##copies##COPIES = \
btree_multimap<BigType<SIZE, COPIES>, intptr_t>; \
MY_BENCHMARK(size##SIZE##copies##COPIES)
// Define BIG_TYPE_TESTING to see benchmarks for more big types.
//
// You can use --copt=-DBIG_TYPE_TESTING.
#ifndef NODESIZE_TESTING
#ifdef BIG_TYPE_TESTING
BIG_TYPE_BENCHMARKS(1, 4);
BIG_TYPE_BENCHMARKS(4, 1);
BIG_TYPE_BENCHMARKS(4, 4);
BIG_TYPE_BENCHMARKS(1, 8);
BIG_TYPE_BENCHMARKS(8, 1);
BIG_TYPE_BENCHMARKS(8, 8);
BIG_TYPE_BENCHMARKS(1, 16);
BIG_TYPE_BENCHMARKS(16, 1);
BIG_TYPE_BENCHMARKS(16, 16);
BIG_TYPE_BENCHMARKS(1, 32);
BIG_TYPE_BENCHMARKS(32, 1);
BIG_TYPE_BENCHMARKS(32, 32);
#else
BIG_TYPE_BENCHMARKS(32, 32);
#endif
#endif
// Benchmark using unique_ptrs to large value types. In order to be able to use
// the same benchmark code as the other types, use a type that holds a
// unique_ptr and has a copy constructor.
template <int Size>
struct BigTypePtr {
BigTypePtr() : BigTypePtr(0) {}
explicit BigTypePtr(int x) {
ptr = absl::make_unique<BigType<Size, Size>>(x);
}
BigTypePtr(const BigTypePtr& other) {
ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr);
}
BigTypePtr(BigTypePtr&& other) noexcept = default;
BigTypePtr& operator=(const BigTypePtr& other) {
ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr);
}
BigTypePtr& operator=(BigTypePtr&& other) noexcept = default;
bool operator<(const BigTypePtr& other) const { return *ptr < *other.ptr; }
bool operator==(const BigTypePtr& other) const { return *ptr == *other.ptr; }
std::unique_ptr<BigType<Size, Size>> ptr;
};
template <int Size>
double ContainerInfo(const btree_set<BigTypePtr<Size>>& b) {
const double bytes_used =
b.bytes_used() + b.size() * sizeof(BigType<Size, Size>);
const double bytes_per_value = bytes_used / b.size();
BtreeContainerInfoLog(b, bytes_used, bytes_per_value);
return bytes_per_value;
}
template <int Size>
double ContainerInfo(const btree_map<int, BigTypePtr<Size>>& b) {
const double bytes_used =
b.bytes_used() + b.size() * sizeof(BigType<Size, Size>);
const double bytes_per_value = bytes_used / b.size();
BtreeContainerInfoLog(b, bytes_used, bytes_per_value);
return bytes_per_value;
}
#define BIG_TYPE_PTR_BENCHMARKS(SIZE) \
using stl_set_size##SIZE##copies##SIZE##ptr = std::set<BigType<SIZE, SIZE>>; \
using stl_map_size##SIZE##copies##SIZE##ptr = \
std::map<int, BigType<SIZE, SIZE>>; \
using stl_unordered_set_size##SIZE##copies##SIZE##ptr = \
std::unordered_set<BigType<SIZE, SIZE>, \
absl::Hash<BigType<SIZE, SIZE>>>; \
using stl_unordered_map_size##SIZE##copies##SIZE##ptr = \
std::unordered_map<int, BigType<SIZE, SIZE>>; \
using flat_hash_set_size##SIZE##copies##SIZE##ptr = \
flat_hash_set<BigType<SIZE, SIZE>>; \
using flat_hash_map_size##SIZE##copies##SIZE##ptr = \
flat_hash_map<int, BigTypePtr<SIZE>>; \
using btree_256_set_size##SIZE##copies##SIZE##ptr = \
btree_set<BigTypePtr<SIZE>>; \
using btree_256_map_size##SIZE##copies##SIZE##ptr = \
btree_map<int, BigTypePtr<SIZE>>; \
MY_BENCHMARK3_STL(stl_set_size##SIZE##copies##SIZE##ptr); \
MY_BENCHMARK3_STL(stl_unordered_set_size##SIZE##copies##SIZE##ptr); \
MY_BENCHMARK3(flat_hash_set_size##SIZE##copies##SIZE##ptr); \
MY_BENCHMARK3(btree_256_set_size##SIZE##copies##SIZE##ptr); \
MY_BENCHMARK3_STL(stl_map_size##SIZE##copies##SIZE##ptr); \
MY_BENCHMARK3_STL(stl_unordered_map_size##SIZE##copies##SIZE##ptr); \
MY_BENCHMARK3(flat_hash_map_size##SIZE##copies##SIZE##ptr); \
MY_BENCHMARK3(btree_256_map_size##SIZE##copies##SIZE##ptr)
BIG_TYPE_PTR_BENCHMARKS(32);
void BM_BtreeSet_IteratorSubtraction(benchmark::State& state) {
absl::InsecureBitGen bitgen;
std::vector<int> vec;
// Randomize the set's insertion order so the nodes aren't all full.
vec.reserve(state.range(0));
for (int i = 0; i < state.range(0); ++i) vec.push_back(i);
absl::c_shuffle(vec, bitgen);
absl::btree_set<int> set;
for (int i : vec) set.insert(i);
size_t distance = absl::Uniform(bitgen, 0u, set.size());
while (state.KeepRunningBatch(distance)) {
size_t end = absl::Uniform(bitgen, distance, set.size());
size_t begin = end - distance;
benchmark::DoNotOptimize(set.find(static_cast<int>(end)) -
set.find(static_cast<int>(begin)));
distance = absl::Uniform(bitgen, 0u, set.size());
}
}
BENCHMARK(BM_BtreeSet_IteratorSubtraction)->Range(1 << 10, 1 << 20);
} // namespace
} // namespace container_internal
ABSL_NAMESPACE_END
} // namespace absl