forked from petercorke/robotics-toolbox-matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRRT.m
536 lines (447 loc) · 18.8 KB
/
RRT.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
%RRT Class for rapidly-exploring random tree navigation
%
% A concrete subclass of the abstract Navigation class that implements the rapidly
% exploring random tree (RRT) algorithm. This is a kinodynamic planner
% that takes into account the motion constraints of the vehicle.
%
% Methods::
% RRT Constructor
% plan Compute the tree
% query Compute a path
% plot Display the tree
% display Display the parameters in human readable form
% char Convert to string
%
% Properties (read only)::
% graph A PGraph object describign the tree
%
% Example::
% goal = [0,0,0];
% start = [0,2,0];
% veh = Bicycle('steermax', 1.2);
% rrt = RRT(veh, 'goal', goal, 'range', 5);
% rrt.plan() % create navigation tree
% rrt.query(start, goal) % animate path from this start location
%
% References::
% - Randomized kinodynamic planning,
% S. LaValle and J. Kuffner,
% International Journal of Robotics Research vol. 20, pp. 378-400, May 2001.
% - Probabilistic roadmaps for path planning in high dimensional configuration spaces,
% L. Kavraki, P. Svestka, J. Latombe, and M. Overmars,
% IEEE Transactions on Robotics and Automation, vol. 12, pp. 566-580, Aug 1996.
% - Robotics, Vision & Control, Section 5.2.5,
% P. Corke, Springer 2011.
%
% See also Navigation, PRM, DXform, Dstar, PGraph.
% Copyright (C) 1993-2017, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
% Peter Corke 8/2009.
%TODO
% more info to the display method
% distance metric choice or weightings
% pass time and model options to the simulation
classdef RRT < Navigation
properties
npoints % number of points to find
graph % graph Object representing random nodes
simtime % path simulation time
xrange % range of x coordinates
yrange % range of y coordinates
speed % speed of vehicle
vehicle % Vehicle class object describes kinematics
revcost % penalty for going backwards
root % coordinate of the root of the tree (3x1)
end
methods
function rrt = RRT(vehicle, varargin)
%RRT.RRT Create an RRT navigation object
%
% R = RRT.RRT(VEH, OPTIONS) is a rapidly exploring tree navigation
% object for a vehicle kinematic model given by a Vehicle subclass object VEH.
%
% R = RRT.RRT(VEH, MAP, OPTIONS) as above but for a region with obstacles
% defined by the occupancy grid MAP.
%
% Options::
% 'npoints',N Number of nodes in the tree (default 500)
% 'simtime',T Interval over which to simulate kinematic model toward
% random point (default 0.5s)
% 'goal',P Goal position (1x2) or pose (1x3) in workspace
% 'speed',S Speed of vehicle [m/s] (default 1)
% 'root',R Configuration of tree root (3x1) (default [0,0,0])
% 'revcost',C Cost penalty for going backwards (default 1)
% 'range',R Specify rectangular bounds of robot's workspace:
% - R scalar; X: -R to +R, Y: -R to +R
% - R (1x2); X: -R(1) to +R(1), Y: -R(2) to +R(2)
% - R (1x4); X: R(1) to R(2), Y: R(3) to R(4)
%
% Other options are provided by the Navigation superclass.
%
% Notes::
% - 'range' option is ignored if an occupacy grid is provided.
%
% Reference::
% - Robotics, Vision & Control
% Peter Corke, Springer 2011. p102.
%
% See also Vehicle, Bicycle, Unicycle.
% invoke the superclass constructor, it handles some options
rrt = rrt@Navigation(varargin{:});
rrt.vehicle = vehicle;
% handle the options not done by Navigation superclass
opt.npoints = 500;
opt.simtime = 0.5;
opt.speed = vehicle.speedmax;
opt.revcost = 1;
opt.root = [0 0 0];
[rrt,args] = tb_optparse(opt, varargin, rrt);
if isempty(rrt.occgrid)
opt = [];
opt.range = 5;
[opt,args] = tb_optparse(opt, args);
% range can be specified as scalar, min/max, different min/max per
% direction
switch length(opt.range)
case 1
rrt.xrange = [-opt.range opt.range];
rrt.yrange = [-opt.range opt.range];
case 2
rrt.xrange = [-opt.range(1) opt.range(1)];
rrt.yrange = [-opt.range(2) opt.range(2)];
case 4
rrt.xrange = [opt.range(1) opt.range(2)];
rrt.yrange = [opt.range(3) opt.range(4)];
otherwise
error('bad range specified');
end
else
rrt.xrange = [1 numcols(rrt.occgrid)];
rrt.yrange = [1 numrows(rrt.occgrid)];
end
rrt.graph = PGraph(3, 'distance', 'SE2', ...
'dweight', 2*pi/norm(sum([rrt.xrange; rrt.yrange])) ); % graph of points in SE(2)
end
function plan(rrt, varargin)
%RRT.plan Create a rapidly exploring tree
%
% R.plan(OPTIONS) creates the tree roadmap by driving the vehicle
% model toward random goal points. The resulting graph is kept
% within the object.
%
% Options::
% 'goal',P Goal pose (1x3)
% 'ntrials',N Number of path trials (default 50)
% 'noprogress' Don't show the progress bar
% 'samples' Show progress in a plot of the workspace
% - '.' for each random point x_rand
% - 'o' for the nearest point which is added to the tree
% - red line for the best path
%
% Notes::
% - At each iteration we need to find a vehicle path/control that moves it
% from a random point towards a point on the graph. We sample ntrials of
% random steer angles and velocities and choose the one that gets us
% closest (computationally slow, since each path has to be integrated
% over time).
opt.progress = true;
opt.samples = false;
opt.goal = [];
opt.ntrials = 50;
opt = tb_optparse(opt, varargin);
if ~isempty(opt.goal)
rrt.goal = opt.goal;
end
% build a graph over the free space
rrt.message('create the graph');
rrt.graph.clear();
if rrt.verbose
clf
%idisp(1-rrt.occgrid, 'ynormal', 'nogui');
hold on
end
% check root node sanity
if isempty(rrt.root)
error('no root node specified');
end
if ~isvec(rrt.root, 3)
error('root must be 3-vector');
end
assert( ~rrt.isoccupied(rrt.root(1:2)), 'root node cell is occupied')
% add the goal point as the first node
vroot = rrt.graph.add_node(rrt.root);
data.vel = 0;
data.path = [];
rrt.graph.setvdata(vroot, data);
% graphics setup
if opt.progress
h = Navigation.progress_init('RRT planning...');
end
if opt.samples
clf
hold on
xlabel('x'); ylabel('y');
end
npoints = 0;
while npoints < rrt.npoints % build the tree
% Step 3
% find random state x,y
% pick a point not in obstacle
while true
xy = rrt.randxy(); % get random coordinate (x,y)
if isempty(rrt.occgrid)
break
else
% we have an occgrid
xy = round( xy ); % round it to a grid cell coordinate
% test if lies in the obstacle map
try
if ~rrt.isoccupied(xy)
break;
end
catch
% index error, point must be off the map
continue;
end
end
end
theta = rrt.rand*2*pi;
xrand = [xy, theta]';
if opt.samples
plot(xy(1), xy(2), '.')
end
% Step 4
% find the existing node closest in state space
vnear = rrt.graph.closest(xrand); % nearest vertex
xnear = rrt.graph.coord(vnear); % coord of nearest vertex
% if rrt.graph.distance_metric(xnear, xrand) < 0.25
% continue;
% end
rrt.message('xrand (%g, %g) node %d', xy, vnear);
% Step 5
% figure how to drive the robot from xnear to xrand
best = rrt.bestpath(xnear, xrand, opt.ntrials);
xnew = best.path(:,best.k);
if opt.samples
plot(xnew(1), xnew(2), 'o');
plot2(best.path', 'r');
drawnow
end
% % ensure that the path is collision free
% if ~rrt.clearpath(y(:,1:2))
% disp('path collision');
% continue;
% end
% Step 7,8
% add xnew to the graph, with an edge from xnear
vnew = rrt.graph.add_node(xnew);
if rrt.graph.vdata(vnear).vel * best.vel < 0
% we changed direction, penalise that
cost = rrt.revcost;
else
cost = 1;
end
rrt.graph.add_edge(vnear, vnew, cost);
rrt.graph.setvdata(vnew, best);
npoints = npoints + 1;
if opt.progress
Navigation.progress(h, npoints / rrt.npoints);
end
end
if opt.progress
Navigation.progress_delete(h)
end
rrt.message('graph create done');
end
function p_ = query(rrt, xstart, xgoal)
%RRT.query Find a path between two points
%
% X = R.path(START, GOAL) finds a path (Nx3) from pose START (1x3)
% to pose GOAL (1x3). The pose is expressed as [X,Y,THETA].
%
% R.path(START, GOAL) as above but plots the path in 3D, where the vertical
% axis is vehicle heading angle. The nodes are shown as circles and the
% line segments are blue for forward motion and red for backward motion.
%
% Notes::
% - The path starts at the vertex closest to the START state, and ends
% at the vertex closest to the GOAL state. If the tree is sparse this
% might be a poor approximation to the desired start and end.
%
% See also RRT.plot.
assert(rrt.graph.n > 0, 'RTB:RRT: there is no plan');
rrt.checkquery(xstart, xgoal);
g = rrt.graph;
vstart = g.closest(xstart);
vgoal = g.closest(xgoal);
% find path through the graph using A* search
[path,cost] = g.Astar(vstart, vgoal);
fprintf('A* path cost %g\n', cost);
% concatenate the vehicle motion segments
cpath = [];
for i = 1:length(path)
p = path(i);
data = g.vdata(p);
if ~isempty(data)
if i >= length(path) || g.edgedir(p, path(i+1)) > 0
cpath = [cpath data.path];
else
cpath = [cpath data.path(:,end:-1:1)];
end
end
end
if nargout == 0
% plot the path
clf; hold on
plot2(g.coord(path)', 'o'); % plot the node coordinates
for i = 1:length(path)
p = path(i);
b = g.vdata(p); % get path data for segment
% draw segment with direction dependent color
if ~isempty(b)
% if the vertex has a path leading to it
if i >= length(path) || g.edgedir(p, path(i+1)) > 0
% positive edge
% draw from prev vertex to end of path
seg = [g.coord(path(i-1)) b.path]';
else
% negative edge
% draw reverse path to next next vertex
seg = [ b.path(:,end:-1:1) g.coord(path(i+1))]';
end
if b.vel > 0
plot2(seg, 'b');
else
plot2(seg, 'r');
end
end
end
xlabel('x'); ylabel('y'); zlabel('\theta');
grid
else
p_ = cpath';
end
end
function plot(rrt, varargin)
%RRT.plot Visualize navigation environment
%
% R.plot() displays the navigation tree in 3D, where the vertical axis is
% vehicle heading angle. If an occupancy grid was provided this is also
% displayed.
% display the occgrid background
rrt.plot_bg(varargin{:});
% display the graph
%rrt.graph.plot('noedges', 'NodeSize', 3, 'NodeFaceColor', 'm', 'NodeEdgeColor', 'm', 'edges');
rrt.graph.plot('noedges', 'nocomponentcolor', 'NodeSize', 3, 'NodeFaceColor', 'b', 'NodeEdgeColor', 'b', 'edges');
hold on
% display the occgrid background
rrt.plot_fg(varargin{:});
axis([rrt.xrange rrt.yrange])
xlabel('x'); ylabel('y'); zlabel('\theta');
grid on; hold off
view(0,90);
axis equal
rotate3d
end
% required by abstract superclass
function next(rrt)
end
function s = char(rrt)
%RRT.char Convert to string
%
% R.char() is a string representing the state of the RRT
% object in human-readable form.
%
% invoke the superclass char() method
s = char@Navigation(rrt);
% add RRT specific stuff information
s = char(s, sprintf(' region: X %f : %f; Y %f : %f', rrt.xrange, rrt.yrange));
s = char(s, sprintf(' sim time: %f', rrt.simtime));
s = char(s, sprintf(' speed: %f', rrt.speed));
s = char(s, sprintf(' Graph:'));
s = char(s, char(rrt.graph) );
if ~isempty(rrt.vehicle)
s = char(s, char(rrt.vehicle) );
end
end
end % methods
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% P R I V A T E M E T H O D S
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
methods (Access='protected')
function best = bestpath(rrt, x0, xg, N)
% initial and final state as column vectors
x0 = x0(:); xg = xg(:);
best.d = Inf;
for i=1:N % for multiple trials
%choose random direction of motion and random steer angle
if rand > 0.5
vel = rrt.speed;
else
vel = -rrt.speed;
end
steer = (2*rrt.rand - 1) * rrt.vehicle.steermax; % uniformly distributed
% simulate motion of vehicle for this speed and steer angle which
% results in a path
x = rrt.vehicle.run2(rrt.simtime, x0, vel, steer)';
%% find point on the path closest to xg
% distance of all path points from goal
d = colnorm( [bsxfun(@minus, x(1:2,:), xg(1:2)); angdiff(x(3,:), xg(3))] );
% the closest one
[dmin,k] = min(d);
% is it the best so far?
if dmin < best.d
% yes it is! save it and the inputs that led to it
best.d = dmin;
best.path = x;
best.steer = steer;
best.vel = vel;
best.k = k;
end
end
end
% generate a random coordinate within the working region
function xy = randxy(rrt)
xy = rrt.rand(1,2) .* [rrt.xrange(2)-rrt.xrange(1) rrt.yrange(2)-rrt.yrange(1)] + ...
[rrt.xrange(1) rrt.yrange(1)];
end
% test if a path is obstacle free
function c = clearpath(rrt, xy)
if isempty(rrt.occgrid)
c = true;
return;
end
xy = round(xy);
try
% test that all points along the path do not lie within an obstacle
for pp=xy'
if rrt.isoccupied(pp) > 0
c = false;
return;
end
end
c = true;
catch
% come here if we index out of bounds
c = false;
return;
end
end
end % private methods
end % class