-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMassRate.hpp
285 lines (228 loc) · 10.6 KB
/
MassRate.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
// Copyright © 2020-2024 Alexandre Coderre-Chabot
//
// This file is part of Physical Quantities (PhQ), a C++ library of physical quantities, physical
// models, and units of measure for scientific computing.
//
// Physical Quantities is hosted at:
// https://github.com/acodcha/phq
//
// Physical Quantities is licensed under the MIT License:
// https://mit-license.org
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
// associated documentation files (the "Software"), to deal in the Software without restriction,
// including without limitation the rights to use, copy, modify, merge, publish, distribute,
// sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// - The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
// - THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
// BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef PHQ_MASS_RATE_HPP
#define PHQ_MASS_RATE_HPP
#include <cstddef>
#include <functional>
#include <ostream>
#include "DimensionalScalar.hpp"
#include "Frequency.hpp"
#include "Mass.hpp"
#include "Time.hpp"
#include "Unit/MassRate.hpp"
namespace PhQ {
// Forward declaration for class PhQ::MassRate.
template <typename NumericType>
class MassDensity;
// Forward declaration for class PhQ::MassRate.
template <typename NumericType>
class VolumeRate;
/// \brief Mass rate. Can represent the time rate of change of a mass or a mass flow rate; see
/// PhQ::Mass, PhQ::Time, and PhQ::Frequency.
template <typename NumericType = double>
class MassRate : public DimensionalScalar<Unit::MassRate, NumericType> {
public:
/// \brief Default constructor. Constructs a mass rate with an uninitialized value.
MassRate() = default;
/// \brief Constructor. Constructs a mass rate with a given value expressed in a given mass rate
/// unit.
MassRate(const NumericType value, const Unit::MassRate unit)
: DimensionalScalar<Unit::MassRate, NumericType>(value, unit) {}
/// \brief Constructor. Constructs a mass rate from a given mass and time using the definition of
/// mass rate.
constexpr MassRate(const Mass<NumericType>& mass, const Time<NumericType>& time)
: MassRate<NumericType>(mass.Value() / time.Value()) {}
/// \brief Constructor. Constructs a mass rate from a given mass and frequency using the
/// definition of mass rate.
constexpr MassRate(const Mass<NumericType>& mass, const Frequency<NumericType>& frequency)
: MassRate<NumericType>(mass.Value() * frequency.Value()) {}
/// \brief Constructor. Constructs a mass rate from a given mass density and volume rate using the
/// definition of mass density.
constexpr MassRate(
const MassDensity<NumericType>& mass_density, const VolumeRate<NumericType>& volume_rate);
/// \brief Destructor. Destroys this mass rate.
~MassRate() noexcept = default;
/// \brief Copy constructor. Constructs a mass rate by copying another one.
constexpr MassRate(const MassRate<NumericType>& other) = default;
/// \brief Copy constructor. Constructs a mass rate by copying another one.
template <typename OtherNumericType>
explicit constexpr MassRate(const MassRate<OtherNumericType>& other)
: MassRate(static_cast<NumericType>(other.Value())) {}
/// \brief Move constructor. Constructs a mass rate by moving another one.
constexpr MassRate(MassRate<NumericType>&& other) noexcept = default;
/// \brief Copy assignment operator. Assigns this mass rate by copying another one.
constexpr MassRate<NumericType>& operator=(const MassRate<NumericType>& other) = default;
/// \brief Copy assignment operator. Assigns this mass rate by copying another one.
template <typename OtherNumericType>
constexpr MassRate<NumericType>& operator=(const MassRate<OtherNumericType>& other) {
this->value = static_cast<NumericType>(other.Value());
return *this;
}
/// \brief Move assignment operator. Assigns this mass rate by moving another one.
constexpr MassRate<NumericType>& operator=(MassRate<NumericType>&& other) noexcept = default;
/// \brief Statically creates a mass rate of zero.
[[nodiscard]] static constexpr MassRate<NumericType> Zero() {
return MassRate<NumericType>{static_cast<NumericType>(0)};
}
/// \brief Statically creates a mass rate with a given value expressed in a given mass rate unit.
template <Unit::MassRate Unit>
[[nodiscard]] static constexpr MassRate<NumericType> Create(const NumericType value) {
return MassRate<NumericType>{
ConvertStatically<Unit::MassRate, Unit, Standard<Unit::MassRate>>(value)};
}
constexpr MassRate<NumericType> operator+(const MassRate<NumericType>& mass_rate) const {
return MassRate<NumericType>{this->value + mass_rate.value};
}
constexpr MassRate<NumericType> operator-(const MassRate<NumericType>& mass_rate) const {
return MassRate<NumericType>{this->value - mass_rate.value};
}
constexpr MassRate<NumericType> operator*(const NumericType number) const {
return MassRate<NumericType>{this->value * number};
}
constexpr Mass<NumericType> operator*(const Time<NumericType>& time) const {
return Mass<NumericType>{*this, time};
}
constexpr MassRate<NumericType> operator/(const NumericType number) const {
return MassRate<NumericType>{this->value / number};
}
constexpr Frequency<NumericType> operator/(const Mass<NumericType>& mass) const {
return Frequency<NumericType>{*this, mass};
}
constexpr Mass<NumericType> operator/(const Frequency<NumericType>& frequency) const {
return Mass<NumericType>{*this, frequency};
}
constexpr MassDensity<NumericType> operator/(const VolumeRate<NumericType>& volume_rate) const;
constexpr VolumeRate<NumericType> operator/(const MassDensity<NumericType>& mass_density) const;
constexpr NumericType operator/(const MassRate<NumericType>& mass_rate) const noexcept {
return this->value / mass_rate.value;
}
constexpr void operator+=(const MassRate<NumericType>& mass_rate) noexcept {
this->value += mass_rate.value;
}
constexpr void operator-=(const MassRate<NumericType>& mass_rate) noexcept {
this->value -= mass_rate.value;
}
constexpr void operator*=(const NumericType number) noexcept {
this->value *= number;
}
constexpr void operator/=(const NumericType number) noexcept {
this->value /= number;
}
private:
/// \brief Constructor. Constructs a mass rate with a given value expressed in the standard mass
/// rate unit.
explicit constexpr MassRate(const NumericType value)
: DimensionalScalar<Unit::MassRate, NumericType>(value) {}
};
template <typename NumericType>
inline constexpr bool operator==(
const MassRate<NumericType>& left, const MassRate<NumericType>& right) noexcept {
return left.Value() == right.Value();
}
template <typename NumericType>
inline constexpr bool operator!=(
const MassRate<NumericType>& left, const MassRate<NumericType>& right) noexcept {
return left.Value() != right.Value();
}
template <typename NumericType>
inline constexpr bool operator<(
const MassRate<NumericType>& left, const MassRate<NumericType>& right) noexcept {
return left.Value() < right.Value();
}
template <typename NumericType>
inline constexpr bool operator>(
const MassRate<NumericType>& left, const MassRate<NumericType>& right) noexcept {
return left.Value() > right.Value();
}
template <typename NumericType>
inline constexpr bool operator<=(
const MassRate<NumericType>& left, const MassRate<NumericType>& right) noexcept {
return left.Value() <= right.Value();
}
template <typename NumericType>
inline constexpr bool operator>=(
const MassRate<NumericType>& left, const MassRate<NumericType>& right) noexcept {
return left.Value() >= right.Value();
}
template <typename NumericType>
inline std::ostream& operator<<(std::ostream& stream, const MassRate<NumericType>& mass_rate) {
stream << mass_rate.Print();
return stream;
}
template <typename NumericType>
inline constexpr MassRate<NumericType> operator*(
const NumericType number, const MassRate<NumericType>& mass_rate) {
return mass_rate * number;
}
template <typename NumericType>
inline constexpr Time<NumericType>::Time(
const Mass<NumericType>& mass, const MassRate<NumericType>& mass_rate)
: Time<NumericType>(mass.Value() / mass_rate.Value()) {}
template <typename NumericType>
inline constexpr Frequency<NumericType>::Frequency(
const MassRate<NumericType>& mass_rate, const Mass<NumericType>& mass)
: Frequency<NumericType>(mass_rate.Value() / mass.Value()) {}
template <typename NumericType>
inline constexpr Mass<NumericType>::Mass(
const MassRate<NumericType>& mass_rate, const Time<NumericType>& time)
: Mass<NumericType>(mass_rate.Value() * time.Value()) {}
template <typename NumericType>
inline constexpr Mass<NumericType>::Mass(
const MassRate<NumericType>& mass_rate, const Frequency<NumericType>& frequency)
: Mass<NumericType>(mass_rate.Value() / frequency.Value()) {}
template <typename NumericType>
inline constexpr Mass<NumericType> Time<NumericType>::operator*(
const MassRate<NumericType>& mass_rate) const {
return Mass<NumericType>{mass_rate, *this};
}
template <typename NumericType>
inline constexpr MassRate<NumericType> Mass<NumericType>::operator*(
const Frequency<NumericType>& frequency) const {
return MassRate<NumericType>{*this, frequency};
}
template <typename NumericType>
inline constexpr MassRate<NumericType> Frequency<NumericType>::operator*(
const Mass<NumericType>& mass) const {
return MassRate<NumericType>{mass, *this};
}
template <typename NumericType>
inline constexpr MassRate<NumericType> Mass<NumericType>::operator/(
const Time<NumericType>& time) const {
return MassRate<NumericType>{*this, time};
}
template <typename NumericType>
inline constexpr Time<NumericType> Mass<NumericType>::operator/(
const MassRate<NumericType>& mass_rate) const {
return Time<NumericType>{*this, mass_rate};
}
} // namespace PhQ
namespace std {
template <typename NumericType>
struct hash<PhQ::MassRate<NumericType>> {
inline size_t operator()(const PhQ::MassRate<NumericType>& mass_rate) const {
return hash<NumericType>()(mass_rate.Value());
}
};
} // namespace std
#endif // PHQ_MASS_RATE_HPP