forked from seq-to-mind/DMRST_Parser
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_depth.py
419 lines (317 loc) · 20.4 KB
/
model_depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from module import EncoderRNN, DecoderRNN, PointerAtten, LabelClassifier, Segmenter
from DataHandler import get_RelationAndNucleus
from random import randint
import config
class ParsingNet(nn.Module):
def __init__(self, language_model, word_dim=768, hidden_size=768, decoder_input_size=768,
atten_model="Dotproduct", classifier_input_size=768, classifier_hidden_size=768, classes_label=42, classifier_bias=True,
rnn_layers=1, dropout_e=0.5, dropout_d=0.5, dropout_c=0.5, bert_tokenizer=None):
super(ParsingNet, self).__init__()
'''
Args:
batch_size: batch size
word_dim: word embedding dimension
hidden_size: hidden size of encoder and decoder
decoder_input_size: input dimension of decoder
atten_model: pointer attention machanisam, 'Dotproduct' or 'Biaffine'
device: device that our model is running on
classifier_input_size: input dimension of labels classifier
classifier_hidden_size: classifier hidden space
classes_label: relation(label) number, default = 39
classifier_bias: bilinear bias in classifier, default = True
rnn_layers: encoder and decoder layer number
dropout: dropout rate
'''
self.word_dim = word_dim
self.hidden_size = hidden_size
self.decoder_input_size = decoder_input_size
self.classifier_input_size = classifier_input_size
self.classifier_hidden_size = classifier_hidden_size
self.classes_label = classes_label
self.classifier_bias = classifier_bias
self.rnn_layers = rnn_layers
self.segmenter = Segmenter(hidden_size)
self.encoder = EncoderRNN(language_model, word_dim, hidden_size, config.enc_rnn_layer_num, dropout_e, bert_tokenizer=bert_tokenizer, segmenter=self.segmenter)
self.decoder = DecoderRNN(decoder_input_size, hidden_size, rnn_layers, dropout_d)
self.pointer = PointerAtten(atten_model, hidden_size)
self.getlabel = LabelClassifier(classifier_input_size, classifier_hidden_size, classes_label, bias=True, dropout=dropout_c)
def forward(self):
raise RuntimeError('Parsing Network does not have forward process.')
def TrainingLoss(self, input_sentence, EDU_breaks, LabelIndex, ParsingIndex, DecoderInputIndex, ParentsIndex, SiblingIndex):
# Obtain encoder outputs and last hidden states
EncoderOutputs, Last_Hiddenstates, total_edu_loss, _ = self.encoder(input_sentence, EDU_breaks)
Label_LossFunction = nn.NLLLoss()
Span_LossFunction = nn.NLLLoss()
Loss_label_batch = 0
Loss_tree_batch = torch.FloatTensor([0.0]).cuda()
Loop_label_batch = 0
Loop_tree_batch = 0
batch_size = len(LabelIndex)
for i in range(batch_size):
cur_LabelIndex = LabelIndex[i]
cur_LabelIndex = torch.tensor(cur_LabelIndex)
cur_LabelIndex = cur_LabelIndex.cuda()
cur_ParsingIndex = ParsingIndex[i]
cur_DecoderInputIndex = DecoderInputIndex[i]
cur_ParentsIndex = ParentsIndex[i]
cur_SiblingIndex = SiblingIndex[i]
if len(EDU_breaks[i]) == 1:
continue
elif len(EDU_breaks[i]) == 2:
# Obtain the encoded representations. The dimension: [2,hidden_size]
cur_EncoderOutputs = EncoderOutputs[i][:len(EDU_breaks[i])]
# Use the last hidden state of a span to predict the relation between these two span.
input_left = cur_EncoderOutputs[0].unsqueeze(0)
input_right = cur_EncoderOutputs[1].unsqueeze(0)
_, log_relation_weights = self.getlabel(input_left, input_right)
Loss_label_batch = Loss_label_batch + Label_LossFunction(log_relation_weights, cur_LabelIndex)
Loop_label_batch = Loop_label_batch + 1
else:
cur_EncoderOutputs = EncoderOutputs[i][:len(EDU_breaks[i])]
cur_Last_Hiddenstates = Last_Hiddenstates[:, i, :].unsqueeze(1)
cur_decoder_hidden = cur_Last_Hiddenstates.contiguous()
EDU_index = [x for x in range(len(cur_EncoderOutputs))]
stacks = ['__StackRoot__', EDU_index]
for j in range(len(cur_DecoderInputIndex)):
if stacks[-1] != '__StackRoot__':
stack_head = stacks[-1]
if len(stack_head) < 3:
# Will remove this from stacks after compute the relation between these two EDUS
input_left = cur_EncoderOutputs[cur_ParsingIndex[j]].unsqueeze(0)
input_right = cur_EncoderOutputs[stack_head[-1]].unsqueeze(0)
assert cur_ParsingIndex[j] < stack_head[-1]
# keep the last hidden state consistent.
cur_decoder_input = torch.mean(cur_EncoderOutputs[stack_head], keepdim=True, dim=0).unsqueeze(0)
cur_decoder_output, cur_decoder_hidden = self.decoder(cur_decoder_input, last_hidden=cur_decoder_hidden)
_, log_relation_weights = self.getlabel(input_left, input_right)
Loss_label_batch = Loss_label_batch + Label_LossFunction(log_relation_weights, cur_LabelIndex[j].unsqueeze(0))
del stacks[-1]
Loop_label_batch = Loop_label_batch + 1
else: # Length of stack_head >= 3
# Compute Tree Loss
# We don't attend to the last EDU of a span to be parsed
cur_decoder_input = torch.mean(cur_EncoderOutputs[stack_head], keepdim=True, dim=0).unsqueeze(0)
# Predict the parsing tree break
cur_decoder_output, cur_decoder_hidden = self.decoder(cur_decoder_input, last_hidden=cur_decoder_hidden)
_, log_atten_weights = self.pointer(cur_EncoderOutputs[stack_head[:-1]], cur_decoder_output.squeeze(0).squeeze(0))
cur_ground_index = torch.tensor([int(cur_ParsingIndex[j]) - int(stack_head[0])])
cur_ground_index = cur_ground_index.cuda()
Loss_tree_batch = Loss_tree_batch + Span_LossFunction(log_atten_weights, cur_ground_index)
# Compute Classifier Loss
""" merge edu level representation for left and right siblings START """
if config.average_edu_level is True:
input_left = torch.mean(cur_EncoderOutputs[stack_head[0]:cur_ParsingIndex[j] + 1, :], keepdim=True, dim=0)
input_right = torch.mean(cur_EncoderOutputs[cur_ParsingIndex[j] + 1: stack_head[-1] + 1, :], keepdim=True, dim=0)
else:
input_left = cur_EncoderOutputs[cur_ParsingIndex[j]].unsqueeze(0)
input_right = cur_EncoderOutputs[stack_head[-1]].unsqueeze(0)
""" merge edu level representation for left and right siblings END """
_, log_relation_weights = self.getlabel(input_left, input_right)
Loss_label_batch = Loss_label_batch + Label_LossFunction(log_relation_weights, cur_LabelIndex[j].unsqueeze(0))
# Stacks stuff
stack_left = stack_head[:(cur_ParsingIndex[j] - stack_head[0] + 1)]
stack_right = stack_head[(cur_ParsingIndex[j] - stack_head[0] + 1):]
del stacks[-1]
Loop_label_batch = Loop_label_batch + 1
Loop_tree_batch = Loop_tree_batch + 1
# Remove ONE-EDU part, TWO-EDU span will be removed after classifier in next step
if len(stack_right) > 1:
stacks.append(stack_right)
if len(stack_left) > 1:
stacks.append(stack_left)
Loss_label_batch = Loss_label_batch / Loop_label_batch
if Loop_tree_batch == 0:
Loop_tree_batch = 1
Loss_tree_batch = Loss_tree_batch / Loop_tree_batch
return Loss_tree_batch, Loss_label_batch, total_edu_loss
def TestingLoss(self, input_sentence, input_EDU_breaks, LabelIndex, ParsingIndex, GenerateTree, use_pred_segmentation):
'''
Input:
input_sentence: [batch_size, length]
input_EDU_breaks: e.g. [[2,4,6,9],[2,5,8,10,13],[6,8],[6]]
LabelIndex: e.g. [[0,3,32],[20,11,14,19],[20],[],]
ParsingIndex: e.g. [[1,2,0],[3,2,0,1],[0],[]]
Output: log_atten_weights
Average loss of tree in a batch
Average loss of relation in a batch
'''
# Obtain encoder outputs and last hidden states
EncoderOutputs, Last_Hiddenstates, _, predict_edu_breaks = self.encoder(input_sentence, input_EDU_breaks, is_test=use_pred_segmentation)
if use_pred_segmentation:
EDU_breaks = predict_edu_breaks
if LabelIndex is None and ParsingIndex is None:
LabelIndex = [[0, ] * (len(i) - 1) for i in EDU_breaks]
ParsingIndex = [[0, ] * (len(i) - 1) for i in EDU_breaks]
else:
EDU_breaks = input_EDU_breaks
Label_LossFunction = nn.NLLLoss()
Span_LossFunction = nn.NLLLoss()
Loss_label_batch = torch.FloatTensor([0.0]).cuda()
Loss_tree_batch = torch.FloatTensor([0.0]).cuda()
Loop_label_batch = 0
Loop_tree_batch = 0
Label_batch = []
Tree_batch = []
if GenerateTree:
SPAN_batch = []
for i in range(len(EDU_breaks)):
cur_label = []
cur_tree = []
cur_LabelIndex = LabelIndex[i]
cur_LabelIndex = torch.tensor(cur_LabelIndex)
cur_LabelIndex = cur_LabelIndex.cuda()
cur_ParsingIndex = ParsingIndex[i]
if len(EDU_breaks[i]) == 1:
# For a sentence containing only ONE EDU, it has no corresponding relation label and parsing tree break.
Tree_batch.append([])
Label_batch.append([])
if GenerateTree:
SPAN_batch.append(['NONE'])
elif len(EDU_breaks[i]) == 2:
# Obtain the encoded representations, the dimension: [2, hidden_size]
cur_EncoderOutputs = EncoderOutputs[i][:len(EDU_breaks[i])]
# Directly run the classifier to obtain predicted label
input_left = cur_EncoderOutputs[0].unsqueeze(0)
input_right = cur_EncoderOutputs[1].unsqueeze(0)
relation_weights, log_relation_weights = self.getlabel(input_left, input_right)
_, topindex = relation_weights.topk(1)
LabelPredict = int(topindex[0][0])
Tree_batch.append([0])
Label_batch.append([LabelPredict])
if use_pred_segmentation is False:
Loss_label_batch = Loss_label_batch + Label_LossFunction(log_relation_weights, cur_LabelIndex)
Loop_label_batch = Loop_label_batch + 1
if GenerateTree:
# Generate a span structure: e.g. (1:Nucleus=span:8,9:Satellite=Attribution:12)
Nuclearity_left, Nuclearity_right, Relation_left, Relation_right = get_RelationAndNucleus(LabelPredict)
Span = '(1:' + str(Nuclearity_left) + '=' + str(Relation_left) + \
':1,2:' + str(Nuclearity_right) + '=' + str(Relation_right) + ':2)'
SPAN_batch.append([Span])
else:
# Obtain the encoded representations, the dimension: [num_EDU, hidden_size]
cur_EncoderOutputs = EncoderOutputs[i][:len(EDU_breaks[i])]
EDU_index = [x for x in range(len(cur_EncoderOutputs))]
stacks = ['__StackRoot__', EDU_index]
# # Obtain last hidden state
cur_Last_Hiddenstates = Last_Hiddenstates[:, i, :].unsqueeze(1)
cur_decoder_hidden = cur_Last_Hiddenstates.contiguous()
LoopIndex = 0
if GenerateTree:
Span = ''
tmp_decode_step = -1
while stacks[-1] != '__StackRoot__':
stack_head = stacks[-1]
if len(stack_head) < 3:
tmp_decode_step += 1
# Predict relation label
input_left = cur_EncoderOutputs[stack_head[0]].unsqueeze(0)
input_right = cur_EncoderOutputs[stack_head[-1]].unsqueeze(0)
# assert stack_head[0] < stack_head[-1]
relation_weights, log_relation_weights = self.getlabel(input_left, input_right)
_, topindex = relation_weights.topk(1)
LabelPredict = int(topindex[0][0])
cur_label.append(LabelPredict)
# For 2 EDU case, we directly point the first EDU as the current parsing tree break
cur_tree.append(stack_head[0])
# keep the last hidden state consistent.
cur_decoder_input = torch.mean(cur_EncoderOutputs[stack_head], keepdim=True, dim=0).unsqueeze(0)
cur_decoder_output, cur_decoder_hidden = self.decoder(cur_decoder_input, last_hidden=cur_decoder_hidden)
# Align ground true label
if LoopIndex > (len(cur_ParsingIndex) - 1):
cur_Label_true = cur_LabelIndex[-1]
else:
cur_Label_true = cur_LabelIndex[LoopIndex]
if use_pred_segmentation is False:
Loss_label_batch = Loss_label_batch + Label_LossFunction(log_relation_weights, cur_Label_true.unsqueeze(0))
Loop_label_batch = Loop_label_batch + 1
LoopIndex = LoopIndex + 1
del stacks[-1]
if GenerateTree:
# To generate a tree structure
Nuclearity_left, Nuclearity_right, Relation_left, Relation_right = get_RelationAndNucleus(LabelPredict)
cur_span = '(' + str(stack_head[0] + 1) + ':' + str(Nuclearity_left) + '=' + str(Relation_left) + \
':' + str(stack_head[0] + 1) + ',' + str(stack_head[-1] + 1) + ':' + str(Nuclearity_right) + '=' + \
str(Relation_right) + ':' + str(stack_head[-1] + 1) + ')'
Span = Span + ' ' + cur_span
else: # Length of stack_head >= 3
tmp_decode_step += 1
# Alternative way is to take the last one as the input. You need to prepare data accordingly for training.
cur_decoder_input = torch.mean(cur_EncoderOutputs[stack_head], keepdim=True, dim=0).unsqueeze(0)
# Predict the parsing tree break
cur_decoder_output, cur_decoder_hidden = self.decoder(cur_decoder_input, last_hidden=cur_decoder_hidden)
atten_weights, log_atten_weights = self.pointer(cur_EncoderOutputs[stack_head[:-1]], cur_decoder_output.squeeze(0).squeeze(0))
_, topindex_tree = atten_weights.topk(1)
TreePredict = int(topindex_tree[0][0]) + stack_head[0]
cur_tree.append(TreePredict)
""" merge edu level representation for left and right siblings START """
if config.average_edu_level is True:
input_left = torch.mean(cur_EncoderOutputs[stack_head[0]:TreePredict + 1, :], keepdim=True, dim=0)
input_right = torch.mean(cur_EncoderOutputs[TreePredict + 1: stack_head[-1] + 1, :], keepdim=True, dim=0)
else:
input_left = cur_EncoderOutputs[TreePredict].unsqueeze(0)
input_right = cur_EncoderOutputs[stack_head[-1]].unsqueeze(0)
""" merge edu level representation for left and right siblings END """
relation_weights, log_relation_weights = self.getlabel(input_left, input_right)
_, topindex_label = relation_weights.topk(1)
LabelPredict = int(topindex_label[0][0])
cur_label.append(LabelPredict)
# Align ground true label and tree
if LoopIndex > (len(cur_ParsingIndex) - 1):
cur_Label_true = cur_LabelIndex[-1]
cur_Tree_true = cur_ParsingIndex[-1]
else:
cur_Label_true = cur_LabelIndex[LoopIndex]
cur_Tree_true = cur_ParsingIndex[LoopIndex]
temp_ground = max(0, (int(cur_Tree_true) - int(stack_head[0])))
if temp_ground >= (len(stack_head) - 1):
temp_ground = stack_head[-2] - stack_head[0]
# Compute Tree Loss
cur_ground_index = torch.tensor([temp_ground])
cur_ground_index = cur_ground_index.cuda()
if use_pred_segmentation is False:
Loss_tree_batch = Loss_tree_batch + Span_LossFunction(log_atten_weights, cur_ground_index)
Loss_label_batch = Loss_label_batch + Label_LossFunction(log_relation_weights, cur_Label_true.unsqueeze(0))
# Stacks stuff
stack_left = stack_head[:(TreePredict - stack_head[0] + 1)]
stack_right = stack_head[(TreePredict - stack_head[0] + 1):]
del stacks[-1]
Loop_label_batch = Loop_label_batch + 1
Loop_tree_batch = Loop_tree_batch + 1
LoopIndex = LoopIndex + 1
# Remove ONE-EDU part
if len(stack_right) > 1:
stacks.append(stack_right)
if len(stack_left) > 1:
stacks.append(stack_left)
if GenerateTree:
# Generate a span structure: e.g. (1:Nucleus=span:8,9:Satellite=Attribution:12)
Nuclearity_left, Nuclearity_right, Relation_left, Relation_right = \
get_RelationAndNucleus(LabelPredict)
cur_span = '(' + str(stack_head[0] + 1) + ':' + str(Nuclearity_left) + '=' + str(Relation_left) + \
':' + str(TreePredict + 1) + ',' + str(TreePredict + 2) + ':' + str(Nuclearity_right) + '=' + \
str(Relation_right) + ':' + str(stack_head[-1] + 1) + ')'
Span = Span + ' ' + cur_span
Tree_batch.append(cur_tree)
Label_batch.append(cur_label)
if GenerateTree:
SPAN_batch.append([Span.strip()])
if Loop_label_batch == 0:
Loop_label_batch = 1
Loss_label_batch = Loss_label_batch / Loop_label_batch
if Loop_tree_batch == 0:
Loop_tree_batch = 1
Loss_tree_batch = Loss_tree_batch / Loop_tree_batch
Loss_label_batch = Loss_label_batch.detach().cpu().numpy()
Loss_tree_batch = Loss_tree_batch.detach().cpu().numpy()
merged_label_gold = []
for tmp_i in LabelIndex:
merged_label_gold.extend(tmp_i)
merged_label_pred = []
for tmp_i in Label_batch:
merged_label_pred.extend(tmp_i)
# assert len(merged_label_gold) == len(merged_label_pred)
return Loss_tree_batch, Loss_label_batch, (SPAN_batch if GenerateTree else None), (merged_label_gold, merged_label_pred), EDU_breaks