forked from CITS3200-Professioanl-Computing-Team-21/WA-Crime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmap.py
353 lines (316 loc) · 15.2 KB
/
map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# LEGACY CODE USING PANDAS TO FILTER CSV
import os
import csv
import numpy as np
import pandas as pd
import geopandas as gpd
import json
#import folium
#import seaborn as sns
import scipy as sp
from scipy import stats
import matplotlib.pyplot as plt
def check_text(textfile):
#to check if file exists
if not os.path.isfile(textfile):
return None
else:
return True
#def file_prep(datafile, geojson, xlsx_csv, coordinates):
#prepare csv file
with open(datafile, 'r') as file:
data = list(csv.reader(file, delimiter = ','))
headers, data = data[0], data[1:]
headers = [header.lower() for header in headers]
for line in data:
for i in range(0,len(line)):
if line[i] == '':
line[i] = '0'
data = pd.DataFrame(data)
data.columns = headers
data['suburb'] = data['suburb'].str.lower()
data['website category names'] = data['website category names'].str.lower()
data = data.rename(columns = {'annual': 'sum'})
data = data.apply(pd.to_numeric, errors='ignore')
#prepare geojson file
init_gda = gpd.read_file(geojson)
gda = init_gda[{'name':init_gda['name'],'geometry':init_gda['geometry']}]
gda['name'] = gda['name'].str.lower()
#prepare localities file
localities = pd.read_csv(xlsx_csv)
localities_header = np.char.lower(localities.columns.values.astype(str))
localities.columns = localities_header
for header in localities_header:
localities[header] = localities[header].str.lower()
localities = localities.rename(columns = {'sub_txt': 'suburb'})
#prepare coordinates from final_data.json
with open(coordinates, 'r') as temp:
boundaries = json.loads(temp.read())
return (data, gda.sort_values(by='name'), localities, boundaries)
def new_file_prep(datafile, xlsx_csv):
#prepare csv file
#consider if filling missing years & crimes is necessary for plotting & analysis
with open(datafile, 'r') as file:
data = list(csv.reader(file, delimiter = ','))
headers, data = data[0], data[1:]
headers = [header.lower() for header in headers]
for line in data:
for i in range(0,len(line)):
if line[i] == '':
line[i] = '0'
data = pd.DataFrame(data)
data.columns = headers
data['suburb'] = data['suburb'].str.lower()
data['website category names'] = data['website category names'].str.lower()
data = data.rename(columns = {'annual': 'sum'})
data = data.apply(pd.to_numeric, errors='ignore')
#prepare localities file
localities = pd.read_csv(xlsx_csv)
localities_header = np.char.lower(localities.columns.values.astype(str))
localities.columns = localities_header
for header in localities_header:
localities[header] = localities[header].str.lower()
localities = localities.rename(columns = {'sub_txt': 'suburb'})
return (data, localities)
def selector_options_expanded(data, localities):
#making a list of places
places = ['all'] + data['suburb'].drop_duplicates().tolist()
#making a list of zone types
types = ['all', 'suburb', 'station', 'district', 'region']
suburb = ['all'] + localities['suburb'].drop_duplicates().sort_values().tolist()
station = ['all'] + localities['station'].drop_duplicates().sort_values().tolist()
district = ['all'] + localities['district'].drop_duplicates().sort_values().tolist()
region = ['all'] + localities['region'].drop_duplicates().sort_values().tolist()
#making a list for the crimes occurred
crimes = ['all'] + data['website category names'].drop_duplicates().tolist()
#making a list of all the dates
years = ['all'] + data['year'].drop_duplicates().sort_values().tolist()
#Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec -> ignore this for now
#Jul, Aug, Sep, Oct, Nov, Dec, Jan, Feb, Mar, Apr, May, Jun -> focus on this
#q1 == jul + aug + sep, q2 == oct + nov + dec, q3 == jan + feb + mar, q4 == apr + may + jun
distribution = ['all', 'jul','aug','sep','oct','nov','dec','jan','feb','mar','apr','may', 'jun', 'q1', 'q2', 'q3', 'q4']
return places, types, suburb, station, district, region, crimes, years, distribution
def data_input_extended(query):
class new_selector:
def __init__(self, name = '', locality = 'all', year = 'all', distribution = 'all', offence = 'all'):
#indicates name of suburb, station, district or region
self.name = name
#indicates either specific suburb, police stations, districts or regions
self.locality = locality
#indicates year spread
self.year = year
#indicates months or quarters
self.distribution = distribution
#indicates specific offence
self.offence = offence
selectors = new_selector(query[0].strip().lower(),query[1].strip().lower(),query[2].strip().lower(),query[3].strip().lower(),query[4].strip().lower())
if selectors.locality == 'all':
selectors.name = 'all'
selectors.locality = 'suburb'
if selectors.year == 'all' or selectors.year == 'all-all':
selectors.year = '2010-21'
elif selectors.year.split('-')[0] == 'all' or selectors.year.split('-')[-1] == 'all':
temp = selectors.year.split('-')
temp.remove('all')
selectors.year = '-'.join(temp)
elif len(selectors.year.split('-')) == 4:
selectors.year = selectors.year[:5] + selectors.year[-2:]
if selectors.distribution == 'all-all':
selectors.distribution = 'all'
elif '-' in selectors.distribution:
if selectors.distribution.split('-')[0] == 'all' or selectors.distribution.split('-')[1] == 'all':
temp = selectors.distribution.split('-')
temp.remove('all')
selectors.distribution = temp
return selectors
def churning_final(data, localities, years, distribution, selectors):
#['jul', 'aug', 'sep', 'oct', 'nov', 'dec', 'jan', 'feb', 'mar', 'apr', 'may', 'jun', 'q1', 'q2', 'q3', 'q4']
col_num = np.array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
years = years[1:]
distribution = distribution[1:]
years_list = []
col_list = []
initial = [0, 1, 2]
q0 = []
q1 = [3, 4, 5]
q2 = [6, 7, 8]
q3 = [9, 10, 11]
q4 = [12, 13, 14]
names_data = localities.loc[localities[selectors.locality] == selectors.name]
names_list = names_data['suburb'].drop_duplicates().sort_values().tolist()
names_cut = data[data['suburb'].isin(names_list)]
if selectors.year == 'all':
selectors.year = '2010-21'
temp1, temp2 = selectors.year.split('-')
temp1 = str(int(temp1[-2:]) + 1)
[years_list.append(i) for i in years if (temp1 <= i[-2:] and i[-2:] <= temp2)]
output = names_cut[names_cut['year'].isin(years_list)]
if selectors.distribution != 'all':
if '-' in selectors.distribution:
temp1, temp2 = selectors.distribution.split('-')
if 'q' in temp1:
temp = range(locals()[temp1][0], locals()[temp2][-1] + 1)
[q0.append(i) for i in temp]
elif 'q' not in temp1:
temp = distribution[distribution.index(temp1):distribution.index(temp2) + 1]
[q0.append(distribution.index(i) + 3) for i in temp]
elif selectors.distribution == 'q1':
q0 = q1
elif selectors.distribution == 'q2':
q0 = q2
elif selectors.distribution == 'q3':
q0 = q3
elif selectors.distribution == 'q4':
q0 = q4
elif len(list(selectors.distribution)) == 3:
q0 = [distribution.index(selectors.distribution) + 3]
elif selectors.distribution == 'all':
q0 = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
output = output[output.columns[initial + q0]]
png = png_plots(output, selectors)
col_num = np.array(q0) - 3
[col_list.append(distribution[i]) for i in col_num]
output['sum'] = output[col_list].sum(axis=1)
output = output[output.columns[[0, 1, 2, -1]]]
names_list = output['suburb'].drop_duplicates().sort_values().tolist()
if selectors.offence != 'all':
output = output.loc[output['website category names'] == selectors.offence]
output = output.rename(columns = {'suburb': 'name'})
elif selectors.offence == 'all':
output = output.groupby(['suburb'])['sum'].sum()
output = pd.DataFrame({'name': names_list, 'sum': list(output)})
columns = output['name'].drop_duplicates().sort_values().tolist()
sums = list(output.groupby(['name'])['sum'].sum())
result = pd.DataFrame({'name':columns, 'sum':sums})
result = result.set_index('name').reindex(names_list).reset_index()
result['sum'] = result['sum'].fillna(0)
result = result.astype(int, errors='ignore')
return result, png
def mini_churning(name_list, selectors, sum_list, data, localities, years, distribution):
for name in name_list:
selectors.name = name
temp_result, png = churning_final(data, localities, years, distribution, selectors)
sum_list.append(temp_result['sum'].sum())
result = pd.DataFrame({'name': name_list, 'sum': list(sum_list)})
return result, png
def png_plots(output, selectors):
#time series analysis
##full range of 2010-21, or custom?
#plot based on years if single location
#plot based on months if single year and location
#plot based on locations if station/district/region
##remember to filter out crimes
col_list = list(output)
output = output.loc[output['website category names'] == selectors.offence]
output['sum'] = output[col_list].sum(axis=1)
#print(output)
if len(output['suburb'].drop_duplicates().sort_values().tolist()) > 1:
png, ax = plt.subplots(1, 2, tight_layout =True)
#plot by locations
sum_list = output.groupby(['suburb'])['sum'].sum()
line_list = output.groupby(['suburb'])[col_list[-4:]].sum()
names_list = output['suburb'].drop_duplicates().sort_values().tolist()
ax[0].plot(line_list.T)
ax[0].legend(list(line_list.T))
ax[0].set_xlabel('hi')
ax[1].bar(names_list, sum_list)
ax[1].set_xticklabels(names_list, rotation=45)
elif len(output['suburb'].drop_duplicates().sort_values().tolist()) == 1:
png, ax = plt.subplots()
if len(output['year'].drop_duplicates().sort_values().tolist()) > 1:
#plot by year
sum_list = output.groupby(['year'])['sum'].sum()
elif len(output['year'].drop_duplicates().sort_values().tolist()) == 1:
#plot by month
output = output.drop(output.columns[[0, 1, 2]], axis = 1)
sum_list = output.sum(axis=0)
ax.plot(sum_list)
#ax[1].xticks(rotation=90)
#plt.xticks(rotation=90)
png.savefig('test.png')
return png
def statistics(sums):
#compile into list, eventually into dataframe for markers
## t-test and pvalues
num = len(sums)
sums = np.array(sums).astype(int)
mean = np.mean(sums)
var = np.var(sums)
std_dev = stats.tstd(sums) #sqrt(var)
std_e = stats.sem(sums) #sd/sqrt(n)
stat = [mean, var, std_dev, std_e]
#stats.ttest_1samp
#(calculated mean-sample value)/standard error
##observed value being sum_counts, caluclated mean being query/sample mean
##sed = (std(population)/sqrt(sample_count))
#If abs(t-statistic) <= critical value: Accept null hypothesis that the means are equal.
#If abs(t-statistic) > critical value: Reject the null hypothesis that the means are equal.
#If p > alpha: Accept null hypothesis that the means are equal.
#If p <= alpha: Reject null hypothesis that the means are equal.
return stat
def main(query):
#to ignore warning [[]], code will run as per normal
pd.options.mode.chained_assignment = None
#first section of code prepares/checks the files
datafile = 'clean_crime.csv'
#geojson = r'Localities_LGATE_234_WA_GDA2020_Public.geojson'
xlsx_csv = 'Suburb Locality.csv'
#coordinates = 'final_data.json'
sum_list = []
if check_text(datafile) == None:
return None
#if check_text(geojson) == None:
return None
if check_text(xlsx_csv) == None:
return None
#if check_text(coordinates) == None:
return None
#ignore gda and boundaries for now
data, localities = new_file_prep(datafile, xlsx_csv)
#places, crimes, years, months, quarters = selector_options(data)
places, types, suburb, station, district, region, crimes, years, distribution = selector_options_expanded(data, localities)
#when preparing the data, collect the queries in the selectors format first
#after error-checking them, filter from data to get only the required localities
#after filtering, sum according to distribution and years where necessary
#after sum, grab coordinates from boundaries to complete the variable
#step1: filter based on years
#step2: filter based on distribution
#step3: filter based on offences
#step4: sum counts based on name and zone_type
selectors = data_input_extended(query)
if selectors.name not in locals()[selectors.locality]:
print('name failed')
return None
if selectors.locality not in types:
print('locality failed')
return None
if (selectors.year.split('-')[0] + '-' + str(int(selectors.year.split('-')[0][2:]) + 1)) not in years:
print('year failed')
return None
if (selectors.distribution.split('-')[0]) not in distribution:
print('distribution failed')
return None
if selectors.offence not in crimes:
print('offence failed')
return None
if selectors.name != 'all':
if selectors.locality == 'suburb' or selectors.locality == 'station':
result, png = churning_final(data, localities, years, distribution, selectors)
elif selectors.locality == 'district':
name_data = localities.loc[localities[selectors.locality] == selectors.name]
name_list = name_data['station'].drop_duplicates().sort_values().tolist()
selectors.locality = 'station'
result, png = mini_churning(name_list, selectors, sum_list, data, localities, years, distribution)
elif selectors.locality == 'region':
name_data = localities.loc[localities[selectors.locality] == selectors.name]
name_list = name_data['district'].drop_duplicates().sort_values().tolist()
selectors.locality = 'district'
result, png = mini_churning(name_list, selectors, sum_list, data, localities, years, distribution)
elif selectors.name == 'all':
name_list = locals()[selectors.locality]
name_list.remove('unknown')
name_list.remove('all')
result, png = mini_churning(name_list, selectors, sum_list, data, localities, years, distribution)
stat = statistics(result['sum'].sort_values().tolist())
return result, stat, png
#signature [name, zone_type, year_range, distribution, crime]