-
Notifications
You must be signed in to change notification settings - Fork 0
/
Egg drop puzzke.py
40 lines (33 loc) · 1.16 KB
/
Egg drop puzzke.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# A Dynamic Programming based Python
# Program for the Egg Dropping Puzzle
INT_MAX = 32767
# Function to get minimum number of trials needed in worst
# case with n eggs and k floors
def eggDrop(n, k):
# A 2D table where entry eggFloor[i][j] will represent minimum
# number of trials needed for i eggs and j floors.
eggFloor = [[0 for x in range(k + 1)] for x in range(n + 1)]
# We need one trial for one floor and0 trials for 0 floors
for i in range(1, n + 1):
eggFloor[i][1] = 1
eggFloor[i][0] = 0
# We always need j trials for one egg and j floors.
for j in range(1, k + 1):
eggFloor[1][j] = j
# Fill rest of the entries in table using optimal substructure
# property
for i in range(2, n + 1):
for j in range(2, k + 1):
eggFloor[i][j] = INT_MAX
for x in range(1, j + 1):
res = 1 + max(eggFloor[i-1][x-1], eggFloor[i][j-x])
if res < eggFloor[i][j]:
eggFloor[i][j] = res
# eggFloor[n][k] holds the result
return eggFloor[n][k]
# Driver program to test to printDups
n = 2
k = 36
print("Minimum number of trials in worst case with" + str(n) + "eggs and "
+ str(k) + " floors is " + str(eggDrop(n, k)))
# This code is contributed by Bhavya Jain