-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathae_cnn_test.py
150 lines (94 loc) · 4.37 KB
/
ae_cnn_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import tensorflow as tf
from data_reader import *
import numpy as np
from uncompress import *
import os
from ae import *
slim = tf.contrib.slim
# def log(message,file_path=os.path.join('cnn_logs_8','log.txt')):
# print message
# f1=open(file_path, 'a+')
# f1.write(message)
# f1.close()
def lrelu(alpha):
def op(inputs):
return tf.maximum(alpha * inputs, inputs, name='leaky_relu')
return op
def conv_net(input):
with slim.arg_scope([slim.conv2d, slim.fully_connected], #using scope to avoid mentioning the paramters repeatdely
activation_fn=lrelu(0.005),
weights_initializer=tf.truncated_normal_initializer(0.0, 0.01),
weights_regularizer=slim.l2_regularizer(0.0005)):
#net = slim.max_pool2d(input,(1,4),(1,4), padding='VALID', scope='pool_0')
net = slim.conv2d(input, 512, (3,1357), 1, padding='VALID', scope='cnn_conv_1')
net = slim.max_pool2d(net, (4,1),4, padding='VALID', scope='cnn_pool_2')
net = slim.conv2d(net, 512, (5,1), 1, scope='cnn_conv_3')
net = slim.max_pool2d(net, (4,1),4, padding='VALID', scope='cnn_pool_4')
net = slim.flatten(net, scope='cnn_flatten_5')
# net = slim.fully_connected(net, 1024, scope='fc_6',activation_fn=tf.nn.softmax)
# net = slim.fully_connected(net, 256, scope='fc_7',activation_fn=tf.nn.softmax)
net = slim.fully_connected(net, 2, scope='cnn_fc_8',activation_fn=tf.nn.softmax)
# net = slim.fully_connected(net, 4096, scope='fc5')
# net = slim.dropout(net, 0.5, scope='dropout6')
# net = slim.fully_connected(net, 4096, scope='fc7')
# net = slim.dropout(net, 0.5, scope='dropout8')
# net = slim.fully_connected(net,2, activation_fn=None, scope='fc9')
return net
def one_hot(batch_size,Y):
B = np.zeros((batch_size,2))
B[np.arange(batch_size),Y] = 1
return B
if __name__=='__main__':
# os.environ['CUDA_VISIBLE_DEVICES'] = '1'
# x = compress(None,None,True)
#print x
# Training Parameters
learning_rate = 0.00001
################################################################
num_epoch = 1
batch_size = 1
display_step = 1
input_size = 50
num_classes = 2
X = tf.placeholder(tf.float32, [None, input_size,86796,1])
reconstruction, compressed,_,_,_,_ = autoencoder(X)
cnn_X = tf.placeholder(tf.float32, [None, input_size,1357,8])
cnn_Y = tf.placeholder(tf.float32, [None, num_classes])
cnn_prediction = conv_net(cnn_X)
cnn_loss_op = slim.losses.softmax_cross_entropy(cnn_prediction,cnn_Y)
cnn_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate)
cnn_train_op = cnn_optimizer.minimize(cnn_loss_op)
cnn_correct_pred = tf.equal(tf.argmax(cnn_prediction, 1), tf.argmax(cnn_Y, 1))
cnn_accuracy = tf.reduce_mean(tf.cast(cnn_correct_pred, tf.float32))
cnn_init = tf.global_variables_initializer()
print 'loading test data...'
test_data_X, test_data_Y = load_test_data()
with tf.Session() as sess:
print "Testing..."
saver = tf.train.Saver()
print saver._var_list
#exit(0)
# sess.run(cnn_init)
# print 'restoring ae session'
# saver.restore(sess, "ae_logs_1/save.ckpt")
# print 'done loading'
print 'restoring session from ', "cnn_logs_ae/save.ckpt"
saver.restore(sess, "cnn_logs_ae/save.ckpt")
print 'done loading'
# exit(0)
i = 0
test_acc = 0.0
for step in range(test_data_X.shape[0]/batch_size):
batch_x, batch_y = test_data_X[step*batch_size:(step+1)*batch_size],\
test_data_Y[step*batch_size:(step+1)*batch_size]
i+=1
batch_x = uncompress(batch_x,86796)
batch_x = sess.run(compressed, feed_dict={X: batch_x})
# print batch_y
batch_y = one_hot(batch_size,batch_y)
batch_y = np.repeat(batch_y,50,axis=0)
# print batch_y
assert(batch_x.shape[0]==batch_y.shape[0])
acc = sess.run(cnn_accuracy, feed_dict={cnn_X: batch_x,cnn_Y: batch_y})
test_acc += acc
print "Test Accuracy = " + "{:.3f}".format(test_acc/i)