-
Notifications
You must be signed in to change notification settings - Fork 13
/
uncompress.py
56 lines (38 loc) · 1.2 KB
/
uncompress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
# the 2d array of our samples,
# each component is a category label
#
def one_2d_to_3d(a,new_dim):
# the 3d array that will be the one-hot representation
# a.max() + 1 is the number of labels we have
# print a
# print a.shape
b = np.zeros(( a.shape[0], a.shape[1], new_dim))
# if you visualize this as a stack of layers,
# where each layer is a sample,
# this first index selects each layer separately
layer_idx = np.arange(a.shape[0]).reshape(a.shape[0], 1)
# this index selects each component separately
component_idx = np.tile(np.arange(a.shape[1]), (a.shape[0], 1))
# then we use `a` to select indices according to category label
b[layer_idx, component_idx, a] = 1
b = b.transpose(1,0,2)
# voila!
# print(b)
# print b.shape
return b
def uncompress(a,num_dim):
#
ans = []
for x in a:
oh = one_2d_to_3d(np.squeeze(x),num_dim)
# print 'oh',oh.shape
ans.append(oh)
ans2 = np.vstack(ans)
ans2 = np.expand_dims(ans2,3)
# print 'ans2', ans2
# print ans2.shape
return ans2
if __name__=='__main__':
a = np.arange(12).reshape(2,2,3,1)
print uncompress(a,12).shape