-
Notifications
You must be signed in to change notification settings - Fork 48
/
dataset.py
459 lines (363 loc) · 15.9 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import os
from os import listdir, makedirs, remove
from os.path import isfile, join, exists
import numpy as np
import pandas as pd
import shutil
import utility as util
import indicator as ind
from sklearn import preprocessing
def getFileNameInDir(path):
onlyFiles = [ join(path,f) for f in listdir(path) if isfile(join(path, f)) ]
return onlyFiles
def getHeaderFile(eodFiles):
for f in eodFiles:
df = pd.read_csv(f)
return df.columns.values # read a header file from first file
def getStockData(eodFiles, selectedSmbol = []):
dict = {} # empty dictionary
for i, f in enumerate(eodFiles):# read all file
df = pd.read_csv(f)
total_row = len(df.index)
all_data = df.values;
#range(start, stop, step)
for row in range(total_row-1, -1, -1): # reveserse form range(0, total_row)
symbol = all_data[row][0] # name of stock in frist column
if len(selectedSmbol)!=0 :
if not symbol in selectedSmbol: continue
if symbol == "COM7": symbol = "COM7_" # fix bug for this symbol only
current_row = all_data[row]
if symbol in dict: # There are symbol data in dictionary
dict[symbol].append(current_row) # append new data to old data
else: # no symbol data in dictionary
dict[symbol] = [current_row]
if(i%500 == 0): # for debug
print("Reading total files : {} ....".format(i))
return dict
def clearDir(dirPath):
if exists(dirPath):
shutil.rmtree(dirPath)
makedirs(dirPath)
DIR_SEC_CSV = "datasets/sec_csv"
# download: http://siamchart.com/stock/
EOD_file = "set-archive_EOD_UPDATE"
def createSymbolCSV(start_idex, outputPath=DIR_SEC_CSV):
eodFiles = getFileNameInDir(EOD_file)
eodFiles = eodFiles[-1 * start_idex:] # select files latest N days
clearDir(outputPath) # delete old files
dataStock = getStockData(eodFiles)
headers = getHeaderFile(eodFiles) # Read header of CSV files
columnNames = { index:value for index, value in enumerate(headers)}
# write data to csv files seperate file name follow symbol names of security
count = 0
for key, allRow in dataStock.items():
df = pd.DataFrame(allRow)
df.rename(columns=columnNames, inplace=True) # change column names in data frame: convert from number to symbol names
fileName = "{}.csv".format(join(outputPath, key))
df.to_csv(fileName, index = False) # write data into CSV file (without index)
if(count%3000 == 0): # for debug
print("Writing total files : {} ....".format(count))
count+=1;
output_dataset="D:\python\output_dataset"
def writeDataSetY(df, symbols, predict=0, window=20, output_dir=output_dataset):
symbols = df.columns.values
df_sr = ind.create_dataframe_SR(df, symbols)
df_result = ind.isStrongSR(df_sr)
# By defult, Use data of 20 days (backward) to predict 15 days (foward)
# Because I would like to know sharpe ratio that are more than 0 continue 10 days or not
shift = window + predict -1
df_result = df_result.shift(-1*shift)
df_result=df_result.dropna(0)
df_result.to_csv(join(output_dir, "@Dataset_Y.csv"), index_label='<DTYYYYMMDD>')
def writeDataSetX(df, output_file, predict=0, window=20):
#By defult, Use data of 20 days to compute
total_row = df.shape[0]
length = total_row-window + 1 - predict # ลบกับ [predict] N days
total_data = df.values
temp_all_data=[]
for row in range(0, length):
temp = total_data[row: row+window] # slice data
temp = np.reshape(temp,-1)
if row == 0:
temp_all_data = temp
else:
temp_all_data = np.vstack([temp_all_data,temp])
column_names = []
for i in range(1, window + 1):
for col in df.columns:
column_names = np.append(column_names, '{}{}'.format(col,i))
list_date=df.index[0:length]
df_result = pd.DataFrame(temp_all_data, columns=column_names, index=list_date)
df_result.to_csv(output_file, index_label='<DTYYYYMMDD>')
return df_result
def createDataFrame(symbol, dates, column_name, csv_dir):
df_main = pd.DataFrame(index=dates) # empty data frame that has indexs as dates
csv_file = join(csv_dir, "{}.csv".format(symbol))
if not isfile(csv_file):
print("Can't found: ",csv_file)
return df_main # return empty data frame
column_date_name = '<DTYYYYMMDD>'
if not column_date_name in column_names:
column_names = np.append([column_date_name], column_names)
df_csv = pd.read_csv(csv_file, index_col=column_date_name,
parse_dates=True, usecols=column_names, na_values=['nan'])
df_main = df_main.join(df_csv)
return df_main.dropna(0)
def prepareDataSet(symbols, dates, csv_dir=DIR_SEC_CSV,output_dir=output_dataset):
clearDir(output_dir)
column_names = ['<CLOSE>', '<VOL>']
column_date = '<DTYYYYMMDD>'
count = 0
for sym in symbols:
df_X = createDataFrame(sym, dates, column_names, csvdir)
#df_X.to_csv(join(output_dir, "{}_test_check.csv".format(sym)))
df_norm = util.normalize_data(df_X)
#df_norm.to_csv(join(output_dir, "{}_test_check_norm.csv".format(sym))) #ไม่มี index ในไฟล์
writeDataSetX(df_norm, join(output_dir, "{}_X.csv".format(sym)))
if(count%20 == 0):
print("Writing total files : {} ....".format(count))
count+=1;
df_Y = util.loadPriceData(symbols, dates)
writeDataSetY(df_Y, symbols)
def getTrainData_1(symbol, startDate, endDate, periods=14, remove_head=19):
dates = pd.date_range(startDate, endDate)
df = util.loadPriceData([symbol], dates)
util.fill_missing_values(df)
# skip periods day latest (14 days) that predict a price is new high or not
df_sliced = df.ix[0: len(df) - periods]
price_close = pd.DataFrame(df_sliced[symbol])
set = pd.DataFrame(df_sliced['SET'])
rsi = ind.rsi(price_close)/100 # normalize
sr = ind.create_dataframe_SR(df_sliced, [symbol])
myRatio = ind.get_myRatio(price_close)
daily = ind.daily_returns(price_close)*100 # normalize
_, _, macd = ind.average_convergence(price_close)
ohlcv = util.load_OHLCV(symbol, dates)
percent_KD = ind.percent_KD(ohlcv)/100 # normalize
c2o = ind.daily_returns_2(ohlcv)*100 # normalize
volume = util.loadVolumeData([symbol], dates)
#skip periods day latest
volume_sliced = volume.ix[0: len(volume) - periods]
assert len(volume_sliced) == len(df_sliced)
obv = ind.OBV(volume_sliced, df_sliced)
obv_rsi = ind.rsi(obv)/100 # calcuate momentum with rsi and normalize
set_rsi = ind.rsi(set)/100 # calcuate momentum with rsi and normalize
# Join data frame
# rename column
rsi.rename(columns={symbol:'RSI'},inplace=True)
#sr.rename(columns={symbol:'SR'},inplace=True)
myRatio.rename(columns={symbol:'MY'},inplace=True)
daily.rename(columns={symbol:'DAILY'},inplace=True)
macd.rename(columns={symbol:'MACD'},inplace=True)
obv_rsi.rename(columns={symbol:'OBV_RSI'},inplace=True)
set_rsi.rename(columns={'SET':'SET_RSI'},inplace=True)
Xtrain = pd.DataFrame(index=df_sliced.index)
Xtrain = Xtrain.join(rsi['RSI'])
Xtrain = Xtrain.join(percent_KD['%K'])
#Xtrain = Xtrain.join(sr['SR'])
Xtrain = Xtrain.join(myRatio['MY'])
Xtrain = Xtrain.join(daily['DAILY'])
Xtrain = Xtrain.join(macd['MACD'])
Xtrain = Xtrain.join(c2o)
Xtrain = Xtrain.join(obv_rsi['OBV_RSI'])
Xtrain = Xtrain.join(set_rsi)
upTrend = ind.isUpTrend(df, symbol, periods=periods)
Ydigit = 1 * upTrend[symbol] # multiply 1 : True is converted to 1 (up trend) , False becomes 0
# skip at head row, avoid NaN values
Xtrain = Xtrain.ix[remove_head:]
Ydigit = Ydigit.ix[remove_head:]
price_close = price_close.ix[remove_head:]
return Xtrain, Ydigit, price_close
def packSeqData(X, Y, sequence_length, size_test=5):
Xpacked = []
height, width = X.shape
for index in range(0, height - sequence_length + 1):
Xsliced = X[index: index + sequence_length]
Xpacked.append(Xsliced.values)
#examples, time series or length of input (n days), dim. of each value or number of features (each technical indicator)
Xpacked = np.array(Xpacked)
assert np.shape(Xpacked) == Xpacked.shape
Xtrain, Xtest = Xpacked[:-size_test], Xpacked[-size_test:]
assert Xtest.shape[0] == size_test
assert Xtrain.shape[0] + size_test == Xpacked.shape[0]
Ypacked = Y[sequence_length-1:]
Ytrain, Ytest = Ypacked[:-size_test], Ypacked[-size_test:]
assert Ytest.shape[0] == size_test
assert Ytrain.shape[0] + size_test == Ypacked.shape[0]
return Xtrain, Xtest, Ytrain, Ytest
def getTrainData_2(symbol, startDate, endDate, remove_head=15):
dates = pd.date_range(startDate, endDate)
df = util.loadPriceData([symbol], dates) #1
close = df.ix[0:len(df)-1] # skip tail
assert len(df) == len(close) + 1
ema5 = ind.ema(close, periods=5) #2
sma5 = ind.ema(close, periods=5) #3
ema15 = ind.ema(close, periods=5) #4
sma15 = ind.ema(close, periods=5) #5
bb1p = ind.get_BBANDS(close, symbol, periods=14, mul=1) #6, #7
bb2p = ind.get_BBANDS(close, symbol, periods=14, mul=2) #8, #9
_, _, macd = ind.average_convergence(close) #10
signal_macd = ind.signal_MACD(macd) #11
rsi = ind.rsi(close) #12
ohlcv = util.load_OHLCV(symbol, dates)
percent_KD = ind.percent_KD(ohlcv) #14, 15
# rename columns
close.rename(columns={symbol:'CLOSE'},inplace=True)
ema5.rename(columns={symbol:'EMA5'},inplace=True)
sma5.rename(columns={symbol:'SMA5'},inplace=True)
ema15.rename(columns={symbol:'EMA15'},inplace=True)
sma15.rename(columns={symbol:'SMA15'},inplace=True)
bb1p.rename(columns={'LOWER':'LOWER_BB1P'},inplace=True)
bb1p.rename(columns={'UPPER':'UPPER_BB1P'},inplace=True)
bb2p.rename(columns={'LOWER':'LOWER_BB2P'},inplace=True)
bb2p.rename(columns={'UPPER':'UPPER_BB2P'},inplace=True)
macd.rename(columns={symbol:'MACD'},inplace=True)
signal_macd.rename(columns={symbol:'SG_MACD'},inplace=True)
rsi.rename(columns={symbol:'RSI'},inplace=True)
Xtrain = pd.DataFrame(index=close.index)
Xtrain = Xtrain.join(close['CLOSE']) # 1
Xtrain = Xtrain.join(ema5['EMA5']) # 2
Xtrain = Xtrain.join(sma5['SMA5']) # 3
Xtrain = Xtrain.join(ema15['EMA15']) # 4
Xtrain = Xtrain.join(sma15['SMA15']) # 5
Xtrain = Xtrain.join(bb1p['LOWER_BB1P']) # 6
Xtrain = Xtrain.join(bb1p['UPPER_BB1P']) # 7
Xtrain = Xtrain.join(bb2p['LOWER_BB2P']) # 8
Xtrain = Xtrain.join(bb2p['UPPER_BB2P']) # 9
Xtrain = Xtrain.join(macd['MACD']) # 10
Xtrain = Xtrain.join(signal_macd['SG_MACD']) # 11
Xtrain = Xtrain.join(rsi['RSI']) # 12
Xtrain = Xtrain.join(percent_KD) # 13
Ytrain = df[symbol].shift(-1) # skip SET and shift
Ytrain.dropna(0, inplace=True)
assert len(Ytrain) == len(Xtrain)
# skip at head row, avoid NaN values
Xtrain = Xtrain[remove_head:]
Ytrain = Ytrain[remove_head:]
return Xtrain, Ytrain
def getTrainData_3(symbol, startDate, endDate, remove_head=15):
dates = pd.date_range(startDate, endDate)
df = util.loadPriceData([symbol], dates) #1
close = df.ix[0:len(df)-1] # skip tail
assert len(df) == len(close) + 1
ema5 = ind.ema(close, periods=5) #2
sma5 = ind.ema(close, periods=5) #3
ema15 = ind.ema(close, periods=5) #4
sma15 = ind.ema(close, periods=5) #5
bb1p = ind.get_BBANDS(close, symbol, periods=14, mul=1) #6, #7
bb2p = ind.get_BBANDS(close, symbol, periods=14, mul=2) #8, #9
_, _, macd = ind.average_convergence(close) #10
signal_macd = ind.signal_MACD(macd) #11
rsi = ind.rsi(close) #12
ohlcv = util.load_OHLCV(symbol, dates)
percent_KD = ind.percent_KD(ohlcv) #14, 15
# rename columns
close.rename(columns={symbol:'CLOSE'},inplace=True)
ema5.rename(columns={symbol:'EMA5'},inplace=True)
sma5.rename(columns={symbol:'SMA5'},inplace=True)
#ema15.rename(columns={symbol:'EMA15'},inplace=True)
#sma15.rename(columns={symbol:'SMA15'},inplace=True)
bb1p.rename(columns={'LOWER':'LOWER_BB1P'},inplace=True)
bb1p.rename(columns={'UPPER':'UPPER_BB1P'},inplace=True)
#bb2p.rename(columns={'LOWER':'LOWER_BB2P'},inplace=True)
#bb2p.rename(columns={'UPPER':'UPPER_BB2P'},inplace=True)
macd.rename(columns={symbol:'MACD'},inplace=True)
#signal_macd.rename(columns={symbol:'SG_MACD'},inplace=True)
rsi.rename(columns={symbol:'RSI'},inplace=True)
Xtrain = pd.DataFrame(index=close.index)
Xtrain = Xtrain.join(close['CLOSE']) # 1
Xtrain = Xtrain.join(ema5['EMA5']) # 2
Xtrain = Xtrain.join(sma5['SMA5']) # 3
#Xtrain = Xtrain.join(ema15['EMA15']) # 4
#Xtrain = Xtrain.join(sma15['SMA15']) # 5
Xtrain = Xtrain.join(bb1p['LOWER_BB1P']) # 6
Xtrain = Xtrain.join(bb1p['UPPER_BB1P']) # 7
#Xtrain = Xtrain.join(bb2p['LOWER_BB2P']) # 8
#Xtrain = Xtrain.join(bb2p['UPPER_BB2P']) # 9
Xtrain = Xtrain.join(macd['MACD']) # 10
#Xtrain = Xtrain.join(signal_macd['SG_MACD']) # 11
Xtrain = Xtrain.join(rsi['RSI']) # 12
Xtrain = Xtrain.join(percent_KD) # 13
df = df[symbol] # skip SET
daily = ind.daily_returns(df)
daily = daily.shift(-1) # predict tommorow
daily.dropna(0, inplace=True) # drop NaN in last row
Ytrain = 1 * (daily > 0.0) # if positive it converted 1, or 0 in negative
assert len(Ytrain) == len(Xtrain)
# skip at head row, avoid NaN values
Xtrain = Xtrain[remove_head:]
Ytrain = Ytrain[remove_head:]
# normalize
normalizer = preprocessing.Normalizer().fit(Xtrain)
Xnorm = normalizer.transform(Xtrain)
Xnorm = pd.DataFrame(Xnorm, columns=Xtrain.columns)
return Xnorm, Ytrain
def getTrainData_4(symbol, startDate, endDate, periods=14, remove_head=19):
dates = pd.date_range(startDate, endDate)
# day periods that predict a price is new high or not
df = util.loadPriceData([symbol], dates)
# skip periods day latest
df_sliced = df.ix[0: len(df) - periods]
price_close = pd.DataFrame(df_sliced[symbol])
set = pd.DataFrame(df_sliced['SET'])
bbands = ind.get_BBANDS(price_close, symbol)
ema26, ema12, macd = ind.average_convergence(price_close)
rsi = ind.rsi(price_close)
daily = ind.daily_returns(price_close)
ohlcv = util.load_OHLCV(symbol, dates)
percent_KD = ind.percent_KD(ohlcv)
volume = util.loadVolumeData(symbol, dates)
#skip periods day latest
volume_sliced = volume.ix[0: len(volume) - periods]
assert len(volume_sliced) == len(price_close)
volume_sliced = pd.DataFrame(volume_sliced[symbol])
obv = ind.OBV(volume_sliced, price_close)
# Join data frame
# rename column
price_close.rename(columns={symbol:'CLOSE'},inplace=True)
ema26.rename(columns={symbol:'EMA26'},inplace=True)
ema12.rename(columns={symbol:'EMA12'},inplace=True)
daily.rename(columns={symbol:'DAILY'},inplace=True)
rsi.rename(columns={symbol:'RSI'},inplace=True)
obv.rename(columns={symbol:'OBV'},inplace=True)
Xtrain = price_close
Xtrain = Xtrain.join(bbands['UPPER'])
Xtrain = Xtrain.join(bbands['LOWER'])
Xtrain = Xtrain.join(ema26)
Xtrain = Xtrain.join(ema12)
Xtrain = Xtrain.join(rsi)
Xtrain = Xtrain.join(percent_KD['%K'])
Xtrain = Xtrain.join(obv)
Xtrain = Xtrain.join(set)
upTrend = ind.isUpTrend(df, symbol, periods=periods)
Ydigit = 1 * upTrend[symbol] # multiply 1 : True is converted to 1 (up trend) , False becomes 0
assert len(Xtrain) == len(Ydigit)
# skip at head row, avoid NaN values
Xtrain = Xtrain.ix[remove_head:]
Ydigit = Ydigit.ix[remove_head:]
Xtrain.fillna(0, inplace=True) # protected NaN value
return Xtrain, Ydigit
DIR_LIST_CSV = "list_securities"
def _getStockSymbol(csvFilename):
df = pd.read_csv(join(DIR_LIST_CSV, csvFilename), encoding = "TIS-620")
symbols = np.append(['SET'], df.values.T[0])
symbols = [ sym.replace('COM7','COM7_') for sym in symbols ] # fix bug only
return symbols
def getSETHDSymbol():
return _getStockSymbol("list_SETHD.csv")
def getSET100Symbol():
return _getStockSymbol("list_SET100.csv")
def getSET50Symbol():
return _getStockSymbol("list_SET50.csv")
def getSubIndustrySymbol():
return _getStockSymbol("list_Index_Sub_Instrudry.csv")
def getAllSymbol(path=DIR_SEC_CSV):
symbols1 = [ f.replace(".csv","") for f in listdir(path) if isfile(join(path, f)) ]
symbols2 = ['SET']
symbols2 = np.append(symbols2, _getStockSymbol('listedCompanies_th_TH.csv'))
#symbols2 = np.append(symbols2, getSET100Symbol())
#symbols2 = np.append(symbols2, getSETHDSymbol())
#symbols2 = np.append(symbols2, getSubIndustrySymbol())
result = list(set(symbols1) & set(symbols2))
result = np.unique(result)
return result