forked from XQP-Munich/TimestampCompression
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.jl
1638 lines (1332 loc) · 56.3 KB
/
index.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
### A Pluto.jl notebook ###
# v0.19.19
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el)
el
end
end
# ╔═╡ 0eaaa803-9bd3-4efe-9766-1f7bc7993854
begin
using Plots
using Latexify, LaTeXStrings
using PlutoUI
using Markdown
using Test
using Distributions: Bernoulli
using Polynomials
end
# ╔═╡ 1446d3db-7da7-4e3d-b7cd-390b69957bf3
md"""
*This document is an interactive Julia notebook (using `Pluto.jl`), or a document exported from it. The original notebook is completely self-contained. Expand cells in the notebook to see the code (in particular, LaTeX equation are often pretty-printed Julia code). All plots can be regenerated with any of the parameters changed and all calculations are included in the notebook file.*
"""
# ╔═╡ 8560ed6c-55c2-483c-8cfb-9d9508aeb0c4
md"""
### Assymptotically optimal limit
In the limit of many detection events to be compressed together, the optimal compression rate is given by [Shannon's source coding theorem](https://en.wikipedia.org/wiki/Shannon%27s_source_coding_theorem). Note that in this limit, a realization of the Poisson process is in one-to-one correspondence to a sequence of waiting times. Thus, both have the same optimal compression limit.
The number of bits (on average) required to compress a single difference between time frame indices is given by the Shannon entropy of the [Geometric distribution](https://en.wikipedia.org/wiki/Geometric_distribution):
"""
# ╔═╡ d5f7ee81-2d0a-42f5-89b3-81bfd191a7b7
md"""
Where ``h_2`` is the Binary Shannon entropy function
"""
# ╔═╡ 5b24a2fc-a4a2-4fba-835a-99a3ddc5da1d
@latexrun h₂(p) = -p * log2(p) - (1 - p) * log2(1 - p)
# ╔═╡ 71962a4a-c5ad-4b25-89a4-964dde13f638
@latexrun H_ΔT(p_det) = h₂(p_det) / p_det
# ╔═╡ 6f8a0039-953e-4ddd-8eef-5a35e1a0dec9
md"""
### Realistic compression (Golomb-Rice)
The Shannon limit is not achievable in practice. However, given our large numbers of detections and small probabilities of detection in a given time frame, we can come very close.
The [Golomb-Rice code](https://en.wikipedia.org/wiki/Golomb_coding) is a near optimal data compression algorithm for the Geometric distribution that is straightforward to implement. It encodes each frame index separately into a sequence of bits, which makes it easier to use and analyze. (By contrast, most efficient compression algorithms, compress a large file as a whole).
"""
# ╔═╡ dfdad6a0-a928-4dd7-bc5a-51233e236e07
md"""
The following plot shows that, under conditions relevant to our application, the Golomb-Rice method comes very close to the optimum as given by the Shannon entropy if the parameter (exponent b) is chosen carefully.
"""
# ╔═╡ 6afcf2d8-f617-4d43-b918-75a282538509
md"""
## Estimating ``\ p_{det}`` (static)
"""
# ╔═╡ 643b0ebb-008e-45f5-afa8-6672d6900899
md"""
To estimate the probability of getting a detection in a given time frame, a number of parameters are important, several of which we do not know yet.
To start, these parameters are fairly certain. They are taken from [[Rusca et al., 2018](https://doi.org/10.48550/arXiv.1801.03443)] and the supplementary material (for the one-decoy-protocol; we do not consider different protocols in this document).
"""
# ╔═╡ 4d688d01-bc55-4859-a7bd-67dc796de559
"Signal state average photon number"
μ₁ = 0.5
# ╔═╡ 31be7bc7-7dfd-4014-8b74-748d6f1ff7c6
"Decoy state average photon number"
μ₂ = 0.15
# ╔═╡ bc7693c2-d503-4b8d-b21f-bf8a2cee289d
"Probability to send a signal state"
Pμ₁ = 0.7
# ╔═╡ b89c31fc-9786-47a2-900c-884eb282d05d
md"""
##### The following parameters we control precisely.
"""
# ╔═╡ f206f0fc-054e-4898-b309-3360fd7833d2
"Repetition frequency of QKD signals (pulses):"
f_rep = 100e6 # Hz
# ╔═╡ ec9b70e5-f647-4a89-be02-1035c54e59d4
md"##### The following paremeters should be measured or simulated"
# ╔═╡ a9f40c72-86de-4a3a-87e7-7591091126ef
begin
η_trans = 1e-4 # optical channel loss
η_receiver = 0.7 # transmissivity of receiver
η_spectral = 0.7 # loss due to spectral filter
η_detector = 0.6 # quantum efficiency of detector
η_safety = 1. # safety margin.
@latexrun η = η_trans * η_receiver * η_spectral * η_detector * η_safety
end
# ╔═╡ 5e91af77-79d4-4afd-b200-7223d3ef64db
begin
# note: use this to make slider:
#md""" $(@bind R_ni Slider(0:300, default = 100, show_value=true)) Hz"""
R_ni = 500 # stray light (counts per second), spectrally filtered
f_dark = 80 # dark counts from one detector (per second)
t_dark = 1e-9 # time filter window (seconds)
@latexrun PDC = (
(R_ni * η_receiver * η_spectral * η_detector + 4 * f_dark) * t_dark
)
end
# ╔═╡ 2a893d6c-1e60-407a-a16e-1f8c16089681
md"""
By adding up the equations (B2) in [Rusca et al., 2018](https://doi.org/10.48550/arXiv.1801.03443) supplementary material and ignoring the dark time correction (negligible for channels with high loss), we get an equation for the probability to get a detection in a given time frame. The dark count term ``PDC`` could also be neglected and is included for completeness.
The 'one minus exponential' factor arises from the Poisson distribution, assuming a detection happens as soon as there is at least one photon in the pulse. The detector efficiency is taken into account inside the total channel transmission η.
"""
# ╔═╡ 3df7671a-5d7a-4d81-a8f6-a9227046bfd9
@latexrun p_det(;η, Pμ₁, μ₁, μ₂, PDC) = (
PDC + Pμ₁*(1 - exp(-μ₁ * η)) + (1 - Pμ₁)*(1 - exp(-μ₂ * η))
)
# ╔═╡ 15f5daf5-44ba-41ce-a963-e23e20d7af36
md"""
## Estimating ``\ p_{det}`` (time dependent loss)
"""
# ╔═╡ b46a64ec-532b-4ae3-8c2a-d3f0bbce4625
"""
Example time dependent channel transmission. Should model a satellite scenario reasonably well, which has a best-case transmission of -31.8dB.
"""
function eta_trans_of_t(t)
p = Polynomial([-31.8, -1.5e-17, -1.01e-3, 1.8e-20, 5.96e-8, 0., -2.4e-12, 0., 4.9e-17, 0., -3.9e-22])
half_time = 205. # acceptable interval: -205 ... 205 seconds.
if abs(t) < half_time
return exp10(1/10 * p(t))
else
return NaN
end
end
# ╔═╡ 462a1f28-a08a-4a5f-b8a0-a0f35042b3da
Markdown.parse("""
We multiply it with the factors from above to obtain total transmission as a function of time
""")
# ╔═╡ 2c3dc8f1-8fb1-4ccd-a1c7-ccadb5068e65
eta_of_t(t) = (
eta_trans_of_t(t) * η_receiver * η_spectral * η_detector * η_safety
)
# ╔═╡ 289a7553-733d-4a63-83a4-086722e9832e
Markdown.parse("""
And detection probability per frame as a function of time
""")
# ╔═╡ eea0f925-705d-4dba-984c-e55a82755c80
p_det_t(t) = p_det(; η=eta_of_t(t), Pμ₁, μ₁, μ₂, PDC)
# ╔═╡ 0567991b-cf8e-41c0-8d80-f0a2123ab885
let
link_time_interval = -250.:250.
plt = plot(eta_trans_of_t, link_time_interval,
yaxis=:log,
yticks=exp10.(-7.:0.2:-2),
xlabel="t (seconds)",
label=L"channel transmission $η_{trans}$",
legend=:topleft,
ylims=(-Inf, 1.5e-3), # to make legend fit
)
plot!(plt,
eta_of_t,
link_time_interval,
label="total transmission η",
)
plot!(plt,
p_det_t,
link_time_interval,
label=latexify(Symbol(p_det))
)
end
# ╔═╡ 68bb0e85-cf67-4d34-a459-d85d0b9d648a
md"""We can use the detection probability to estimate the total number of detection events by integrating over the curve:
"""
# ╔═╡ b8055769-0cb1-4b48-853e-eb85e40369fe
let
δt = 1e-2 # seconds
t_range_integrate = -200:δt:200
curve_avg_detections_per_time_frame = p_det_t.(t_range_integrate)
integral_total_detections = sum(δt .* curve_avg_detections_per_time_frame * f_rep)
Markdown.parse("""
### Total expected detections: $(latexify(integral_total_detections, fmt=FancyNumberFormatter(2),))
""")
end
# ╔═╡ 4a8f68d7-19cd-4121-8562-91bc8db271b3
md"""
Using this detection probability, we estimate the total number of bits needed to perform time sifting on data collected during the entire time.
To compute the total number of bits needed we treat the detection probability and the 'avg. bits per timestamp' as smooth functions of time and integrate their product.
"""
# ╔═╡ 29f93574-b9bf-457c-bae1-42bf1ab29a50
md"""
.
.
.
# Helper functions"""
# ╔═╡ 9129c148-91d6-46a2-b6bc-88a3b26b5b02
TableOfContents() # generates an interactive table of contents for the notebook.
# ╔═╡ 9bbf3207-ea72-434f-8406-84525d0eddf1
"""
Golomb-Rice encoding of a vector of time frame indices (is converted do differences)
"""
function encode_golomb_rice(input::Vector{Int}, b::Int)
result = Bool[] # vector of bits
current = 0
for i in eachindex(input)
next = input[i]
diff = next - current
current = next
factor = div(diff, 2^b) # floor division
remainder = diff % (2^b)
# unary encoding of factor
for f = factor:-1:1
push!(result, true)
end
push!(result, false) # marks end of factor encoding
# binary encoding of remainder
for bit_idx in 0:(b-1)
push!(result, (remainder >> bit_idx) & 1)
end
end
return result
end
# ╔═╡ 84b60a6f-48e7-4319-86b4-af98fbfdb496
"""
Decodes differences between timestamps that correspond to input to `encode_golomb_rice`
"""
function decode_golomb_rice(input::Vector{Bool}, b::Int)
result = Int[]
current_factor = 0
current_remainder = 0
i = 1
while i <= length(input)
if input[i]
current_factor += 1
i += 1
continue
else
i += 1 # skip the zero-bit marking end of factor.
for j in 0:(b-1)
current_remainder += input[i + j] * 2^j
end
i += (b - 1)
end
push!(result, 2^b * current_factor + current_remainder)
current_factor = 0
current_remainder = 0
i += 1
end
return result
end
# ╔═╡ 784ced0b-fd1a-42e7-9df2-f7b4a6615819
let # unit test to test the compression functions
v = [1, 25, 56, 123]
b = 4;
encoded = encode_golomb_rice(v, b)
# encodes 0, 1, 24, 31, 67 (differences of v)
expected = Bool[
0, 1, 0, 0, 0, # 1
1, 0, 0, 0, 0, 1, # 24
1, 0, 1, 1, 1, 1, # 31
1, 1, 1, 1, 0, 1, 1, 0, 0 # 67
]
@test encoded == expected
end
# ╔═╡ 2eac341f-cd24-4ae9-8582-c87019589063
let # unit test to test the compression functions
timestamps = [1, 25, 56, 123]
encoded = encode_golomb_rice(timestamps, 4)
decoded = decode_golomb_rice(encoded, 4)
expected_diffs = [1, 24, 31, 67]
@test expected_diffs == [timestamps[1], diff(timestamps)...]
@test decoded == expected_diffs
end
# ╔═╡ c87460cb-792e-41d5-9fa7-9dc54ba44710
"""
Computes compression efficiency of Golomb-Rice code
(Assume p_det < 0.5)
`n_samples` is actually the number of possible frames.
E.g., for a frame duration of 10ns (1/100MHz) and a link duration of 7 minutes,
n_samples = 4.2e10. Such large sample sizes become computationally demanding.
The parameter b specifies the exponent that is used for the Golomb-Rice code. A good (but not provably optimal) choice is given by default.
"""
function golombrice_avg_bits_per_timestamp(
p_det;
b=round(Int, -log2(-log2(1-p_det))), # known to be a good value
n_samples=1_000_000,
)
dist = Bernoulli(p_det)
frame_indices = findall(rand(dist, n_samples))
compressed = encode_golomb_rice(frame_indices, b)
avg_bits_per_detection = length(compressed) / length(frame_indices)
return avg_bits_per_detection
end
# ╔═╡ 9c290708-e0ee-42cf-bdc8-ac39b9120a1a
let
# warning: this cell both plots and reruns the monte-carlo simulation every time it is executed.
# Beware the computation time for large sample sizes.
p_range = exp10.(-6:0.2:-3)
n_samples = Int(1e8)
plt = plot(H_ΔT, p_range,
title="""Time stamp compression
($(1. *n_samples) frames simulated)
""",
xaxis=:log,
xflip=true,
xlabel=L"p_{det}",
ylabel="avg. bits per time frame index",
xticks=exp10.(-6:1:-3),
yticks=10:2:26,
label=L"\mathrm{Shannon\ entropy } \ H_{ΔT} \ (optimal)",
legend=:bottomright
)
plot!(plt,
p -> golombrice_avg_bits_per_timestamp(p; n_samples=n_samples),
p_range,
label="Golomb-Rice (b chosen as shown)",
)
__b = 17
plot!(plt,
p -> golombrice_avg_bits_per_timestamp(p;
n_samples=n_samples, b=__b),
p_range,
label="Golomb-Rice (b=$__b)",
)
plot!(plt,
p -> round(Int, -log2(-log2(1-p))),
exp10.(-6:0.01:-3),
label=L"b = \mathrm{round}(-\log_2(-\log_2(1-p_{det})))",
)
plt
end
# ╔═╡ 89e67b55-10b4-4a5e-9892-4193fab77300
# curve to integrate to get total transmitted bits
begin
b_const_integrate = 14
δt = 2 # seconds
t_range_integrate = -200:δt:200
avg_bits_per_time_frame(t) = golombrice_avg_bits_per_timestamp(p_det_t(t);
n_samples=Int(1e8), b=b_const_integrate) * p_det_t(t)
curve_avg_bits_per_time_frame = avg_bits_per_time_frame.(t_range_integrate)
integral_total_bits = sum(δt .* curve_avg_bits_per_time_frame * f_rep)
plt_bits_per_timeframe = plot(
t_range_integrate, curve_avg_bits_per_time_frame,
xlabel="t (seconds)",
ylabel="avg. bits per time frame",
label="Golomb-Rice (b = $b_const_integrate)",
)
opt_avg_bits_per_time_frame(t) = p_det_t(t) * H_ΔT(p_det_t(t))
opt_curve_avg_bits_per_time_frame = opt_avg_bits_per_time_frame.(t_range_integrate
)
opt_integral_total_bits = sum(δt .* opt_curve_avg_bits_per_time_frame * f_rep)
plot!(plt_bits_per_timeframe,
t_range_integrate, opt_curve_avg_bits_per_time_frame,
label="Shannon Limit",
)
plt_bits_per_timeframe
end
# ╔═╡ 03f9ab84-59aa-4118-83e0-6ff6824a8e0e
Markdown.parse("""The integral of the realistic (Golomb-Rice) curve yields the
### Total bits transmitted for time-sifting: $(latexify(integral_total_bits, fmt=FancyNumberFormatter(3),))
for comparison: the Shannon limit gives the lower bound for total bits transmitted of $(latexify(opt_integral_total_bits, fmt=FancyNumberFormatter(3),)).
""")
# ╔═╡ 52e511ac-3025-4b9b-9380-5fa06c569f09
"""
Like @show but returns a LaTeXString instead of printing to stdout.
The expression is not evaluated!!! Don't use to define things!
"""
macro show_latex(ex)
quote
$(latexify)($(string(ex)) * " = " * $string($(esc(ex))),
env=:raw,
fmt=FancyNumberFormatter(),
)
end
end
# ╔═╡ 9b97a6b0-57c9-4b2d-8257-5a7dfb68a2e3
Markdown.parse("""
# Classical data for QKD time-sifting
This notebook describes the amount of classical data transmission required to perform **time-sifting**, which is the first step in QKD post-processing (often omitted in theoretical analyses). Time-sifting can take up to 90% of the total data transmission required for QKD post-processing.
In time-sifting, the QKD detector (Bob) informs (via classical communication) the sender (Alice) at which times quantum detection events were recorded. Assume a BB84 scenario where the sender sends pulses with a constant repetition rate (e.g. ``$(@show_latex f_rep)`` Hz). Assuming that Alice and Bob have synchronized clocks and agree on a start time, to perform time sifting, Bob only needs to inform Alice in which **time frames** (intervals of length ``1/f_{rep}``) detection events happened. This is to say, for each detection event Bob transmits via the classical link one number (**index**) indicating the time frame where it happend.
Note that for 10 nanosecond long time frames and 7 minutes of link duration, there are ``4.2\\cdot 10^{10}`` frames. If time sifting during the QKD link is not possible, the QKD sender has to store all random numbers used to prepare each of the ``4.2\\cdot 10^{10}`` quantum states until the time sifting is completed. If each state takes up one byte, this amounts to 42 Gigabytes, which can be a challenge for the sender hardware.
""")
# ╔═╡ e500d4a6-84e4-4689-9dc5-7cdb1eddb70c
begin
display_p_det = latexify(
p_det(; η, Pμ₁, μ₁, μ₂, PDC)
; fmt = FancyNumberFormatter(2)
) # these are default values defined below
Markdown.parse("""
## How many bits per detection? (Stationary case)
Assume that the optical transmission of the channel (e.g. ``$(@show_latex η)`` or ``$(round(10*log10(η); sigdigits=3))`` dB) is constant over time (e.g. for a free-space optical link between buildings). To a good approximation, there is a constant and independent probability (e.g. ``p_{det} = `` $display_p_det ) to get a detection in any given time interval. (This is an approximation, since fluctuations in the optical losses will be correlated in time even for a stationary link.)
The task of transmitting time sifting information thus becomes transmitting a number of i.i.d. samples from a Bernoulli distribution, i.e., a finite part of a [Bernoulli process](https://en.wikipedia.org/wiki/Bernoulli_process). We assume that there are many detection events and subsequently consider the process itself, rather than a finite part.
To minimize the amount of classical communication needed for time sifting, we want to compress this data as much as possible. While these indices keep increasing, the waiting times (difference between indices) of consecutive detections for a Bernoulli process follow a stationary distribution: the geometric distribution (discrete analog of the exponential distribution, just like a Bernoulli process is the discrete analog of a Poisson process). More precisely, let ``\\Delta T`` be the random variable of waiting times (time frame index differences) between consecutive detection events. Then
```math
P(\\Delta T = N) = (1 - p_{det})^{N-1} p_{det}, \\qquad N=1,2,\\dots
```
""")
end
# ╔═╡ d60402c6-6527-44c7-8145-95387b5820cf
Markdown.parse("""
Channel attentuation
See [Gruneisen et al.](https://doi.org/10.1364/OE.23.023924)
(e.g. ``$(@show_latex η)``)
""")
# ╔═╡ 77f1ddd1-aba6-452f-87b7-96944e73a71a
Markdown.parse("""
The probability to get a dark count inside one frame of length ``1/f_{rep}``
Includes contributions from sky radiance and detector dark counts.
(e.g. ``$(@show_latex PDC)``)
See [Gruneisen et al.](https://doi.org/10.1364/OE.23.023924)
""")
# ╔═╡ f5e3cf21-4347-4452-8b50-4938268fbba1
Markdown.parse("""
For the example values considered here, we obtain
```math
$(@show_latex p_det(; η, Pμ₁, μ₁, μ₂, PDC))
```
""")
# ╔═╡ 7733a685-ef5f-48bd-8aa7-44d02ac4aa14
Markdown.parse("""
Consider the following time dependent channel transmission (example for around 500km). This corresponds to the variable ``$(@show_latex η_trans)`` above.
Using this, we can calculate the time dependent 'detection probabilities in a single frame'.
""")
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
LaTeXStrings = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f"
Latexify = "23fbe1c1-3f47-55db-b15f-69d7ec21a316"
Markdown = "d6f4376e-aef5-505a-96c1-9c027394607a"
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8"
Polynomials = "f27b6e38-b328-58d1-80ce-0feddd5e7a45"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[compat]
Distributions = "~0.25.79"
LaTeXStrings = "~1.3.0"
Latexify = "~0.15.18"
Plots = "~1.38.1"
PlutoUI = "~0.7.49"
Polynomials = "~3.2.1"
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.8.3"
manifest_format = "2.0"
project_hash = "bc069968fd6b8782e11d5fa196446a4f150b77f5"
[[deps.AbstractPlutoDingetjes]]
deps = ["Pkg"]
git-tree-sha1 = "8eaf9f1b4921132a4cff3f36a1d9ba923b14a481"
uuid = "6e696c72-6542-2067-7265-42206c756150"
version = "1.1.4"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
version = "1.1.1"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.BitFlags]]
git-tree-sha1 = "43b1a4a8f797c1cddadf60499a8a077d4af2cd2d"
uuid = "d1d4a3ce-64b1-5f1a-9ba4-7e7e69966f35"
version = "0.1.7"
[[deps.Bzip2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "19a35467a82e236ff51bc17a3a44b69ef35185a2"
uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0"
version = "1.0.8+0"
[[deps.Cairo_jll]]
deps = ["Artifacts", "Bzip2_jll", "CompilerSupportLibraries_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Pkg", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"]
git-tree-sha1 = "4b859a208b2397a7a623a03449e4636bdb17bcf2"
uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a"
version = "1.16.1+1"
[[deps.Calculus]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "f641eb0a4f00c343bbc32346e1217b86f3ce9dad"
uuid = "49dc2e85-a5d0-5ad3-a950-438e2897f1b9"
version = "0.5.1"
[[deps.ChainRulesCore]]
deps = ["Compat", "LinearAlgebra", "SparseArrays"]
git-tree-sha1 = "e7ff6cadf743c098e08fca25c91103ee4303c9bb"
uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
version = "1.15.6"
[[deps.ChangesOfVariables]]
deps = ["ChainRulesCore", "LinearAlgebra", "Test"]
git-tree-sha1 = "38f7a08f19d8810338d4f5085211c7dfa5d5bdd8"
uuid = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0"
version = "0.1.4"
[[deps.CodecZlib]]
deps = ["TranscodingStreams", "Zlib_jll"]
git-tree-sha1 = "ded953804d019afa9a3f98981d99b33e3db7b6da"
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
version = "0.7.0"
[[deps.ColorSchemes]]
deps = ["ColorTypes", "ColorVectorSpace", "Colors", "FixedPointNumbers", "Random", "SnoopPrecompile"]
git-tree-sha1 = "aa3edc8f8dea6cbfa176ee12f7c2fc82f0608ed3"
uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
version = "3.20.0"
[[deps.ColorTypes]]
deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "eb7f0f8307f71fac7c606984ea5fb2817275d6e4"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.11.4"
[[deps.ColorVectorSpace]]
deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "SpecialFunctions", "Statistics", "TensorCore"]
git-tree-sha1 = "600cc5508d66b78aae350f7accdb58763ac18589"
uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4"
version = "0.9.10"
[[deps.Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "Reexport"]
git-tree-sha1 = "fc08e5930ee9a4e03f84bfb5211cb54e7769758a"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.12.10"
[[deps.Compat]]
deps = ["Dates", "LinearAlgebra", "UUIDs"]
git-tree-sha1 = "00a2cccc7f098ff3b66806862d275ca3db9e6e5a"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "4.5.0"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "0.5.2+0"
[[deps.Contour]]
git-tree-sha1 = "d05d9e7b7aedff4e5b51a029dced05cfb6125781"
uuid = "d38c429a-6771-53c6-b99e-75d170b6e991"
version = "0.6.2"
[[deps.DataAPI]]
git-tree-sha1 = "e8119c1a33d267e16108be441a287a6981ba1630"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.14.0"
[[deps.DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "d1fff3a548102f48987a52a2e0d114fa97d730f0"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.13"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
[[deps.DensityInterface]]
deps = ["InverseFunctions", "Test"]
git-tree-sha1 = "80c3e8639e3353e5d2912fb3a1916b8455e2494b"
uuid = "b429d917-457f-4dbc-8f4c-0cc954292b1d"
version = "0.4.0"
[[deps.Distributions]]
deps = ["ChainRulesCore", "DensityInterface", "FillArrays", "LinearAlgebra", "PDMats", "Printf", "QuadGK", "Random", "SparseArrays", "SpecialFunctions", "Statistics", "StatsBase", "StatsFuns", "Test"]
git-tree-sha1 = "a7756d098cbabec6b3ac44f369f74915e8cfd70a"
uuid = "31c24e10-a181-5473-b8eb-7969acd0382f"
version = "0.25.79"
[[deps.DocStringExtensions]]
deps = ["LibGit2"]
git-tree-sha1 = "2fb1e02f2b635d0845df5d7c167fec4dd739b00d"
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
version = "0.9.3"
[[deps.Downloads]]
deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
version = "1.6.0"
[[deps.DualNumbers]]
deps = ["Calculus", "NaNMath", "SpecialFunctions"]
git-tree-sha1 = "5837a837389fccf076445fce071c8ddaea35a566"
uuid = "fa6b7ba4-c1ee-5f82-b5fc-ecf0adba8f74"
version = "0.6.8"
[[deps.Expat_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "bad72f730e9e91c08d9427d5e8db95478a3c323d"
uuid = "2e619515-83b5-522b-bb60-26c02a35a201"
version = "2.4.8+0"
[[deps.FFMPEG]]
deps = ["FFMPEG_jll"]
git-tree-sha1 = "b57e3acbe22f8484b4b5ff66a7499717fe1a9cc8"
uuid = "c87230d0-a227-11e9-1b43-d7ebe4e7570a"
version = "0.4.1"
[[deps.FFMPEG_jll]]
deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "PCRE2_jll", "Pkg", "Zlib_jll", "libaom_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"]
git-tree-sha1 = "74faea50c1d007c85837327f6775bea60b5492dd"
uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5"
version = "4.4.2+2"
[[deps.FileWatching]]
uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee"
[[deps.FillArrays]]
deps = ["LinearAlgebra", "Random", "SparseArrays", "Statistics"]
git-tree-sha1 = "9a0472ec2f5409db243160a8b030f94c380167a3"
uuid = "1a297f60-69ca-5386-bcde-b61e274b549b"
version = "0.13.6"
[[deps.FixedPointNumbers]]
deps = ["Statistics"]
git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc"
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
version = "0.8.4"
[[deps.Fontconfig_jll]]
deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Pkg", "Zlib_jll"]
git-tree-sha1 = "21efd19106a55620a188615da6d3d06cd7f6ee03"
uuid = "a3f928ae-7b40-5064-980b-68af3947d34b"
version = "2.13.93+0"
[[deps.Formatting]]
deps = ["Printf"]
git-tree-sha1 = "8339d61043228fdd3eb658d86c926cb282ae72a8"
uuid = "59287772-0a20-5a39-b81b-1366585eb4c0"
version = "0.4.2"
[[deps.FreeType2_jll]]
deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"]
git-tree-sha1 = "87eb71354d8ec1a96d4a7636bd57a7347dde3ef9"
uuid = "d7e528f0-a631-5988-bf34-fe36492bcfd7"
version = "2.10.4+0"
[[deps.FriBidi_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "aa31987c2ba8704e23c6c8ba8a4f769d5d7e4f91"
uuid = "559328eb-81f9-559d-9380-de523a88c83c"
version = "1.0.10+0"
[[deps.GLFW_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Libglvnd_jll", "Pkg", "Xorg_libXcursor_jll", "Xorg_libXi_jll", "Xorg_libXinerama_jll", "Xorg_libXrandr_jll"]
git-tree-sha1 = "d972031d28c8c8d9d7b41a536ad7bb0c2579caca"
uuid = "0656b61e-2033-5cc2-a64a-77c0f6c09b89"
version = "3.3.8+0"
[[deps.GR]]
deps = ["Artifacts", "Base64", "DelimitedFiles", "Downloads", "GR_jll", "HTTP", "JSON", "Libdl", "LinearAlgebra", "Pkg", "Preferences", "Printf", "Random", "Serialization", "Sockets", "TOML", "Tar", "Test", "UUIDs", "p7zip_jll"]
git-tree-sha1 = "387d2b8b3ca57b791633f0993b31d8cb43ea3292"
uuid = "28b8d3ca-fb5f-59d9-8090-bfdbd6d07a71"
version = "0.71.3"
[[deps.GR_jll]]
deps = ["Artifacts", "Bzip2_jll", "Cairo_jll", "FFMPEG_jll", "Fontconfig_jll", "GLFW_jll", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Libtiff_jll", "Pixman_jll", "Pkg", "Qt5Base_jll", "Zlib_jll", "libpng_jll"]
git-tree-sha1 = "5982b5e20f97bff955e9a2343a14da96a746cd8c"
uuid = "d2c73de3-f751-5644-a686-071e5b155ba9"
version = "0.71.3+0"
[[deps.Gettext_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "XML2_jll"]
git-tree-sha1 = "9b02998aba7bf074d14de89f9d37ca24a1a0b046"
uuid = "78b55507-aeef-58d4-861c-77aaff3498b1"
version = "0.21.0+0"
[[deps.Glib_jll]]
deps = ["Artifacts", "Gettext_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Libiconv_jll", "Libmount_jll", "PCRE2_jll", "Pkg", "Zlib_jll"]
git-tree-sha1 = "d3b3624125c1474292d0d8ed0f65554ac37ddb23"
uuid = "7746bdde-850d-59dc-9ae8-88ece973131d"
version = "2.74.0+2"
[[deps.Graphite2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "344bf40dcab1073aca04aa0df4fb092f920e4011"
uuid = "3b182d85-2403-5c21-9c21-1e1f0cc25472"
version = "1.3.14+0"
[[deps.Grisu]]
git-tree-sha1 = "53bb909d1151e57e2484c3d1b53e19552b887fb2"
uuid = "42e2da0e-8278-4e71-bc24-59509adca0fe"
version = "1.0.2"
[[deps.HTTP]]
deps = ["Base64", "CodecZlib", "Dates", "IniFile", "Logging", "LoggingExtras", "MbedTLS", "NetworkOptions", "OpenSSL", "Random", "SimpleBufferStream", "Sockets", "URIs", "UUIDs"]
git-tree-sha1 = "fd9861adba6b9ae4b42582032d0936d456c8602d"
uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3"
version = "1.6.3"
[[deps.HarfBuzz_jll]]
deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "Graphite2_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Pkg"]
git-tree-sha1 = "129acf094d168394e80ee1dc4bc06ec835e510a3"
uuid = "2e76f6c2-a576-52d4-95c1-20adfe4de566"
version = "2.8.1+1"
[[deps.HypergeometricFunctions]]
deps = ["DualNumbers", "LinearAlgebra", "OpenLibm_jll", "SpecialFunctions", "Test"]
git-tree-sha1 = "709d864e3ed6e3545230601f94e11ebc65994641"
uuid = "34004b35-14d8-5ef3-9330-4cdb6864b03a"
version = "0.3.11"
[[deps.Hyperscript]]
deps = ["Test"]
git-tree-sha1 = "8d511d5b81240fc8e6802386302675bdf47737b9"
uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91"
version = "0.0.4"
[[deps.HypertextLiteral]]
deps = ["Tricks"]
git-tree-sha1 = "c47c5fa4c5308f27ccaac35504858d8914e102f9"
uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2"
version = "0.9.4"
[[deps.IOCapture]]
deps = ["Logging", "Random"]
git-tree-sha1 = "f7be53659ab06ddc986428d3a9dcc95f6fa6705a"
uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89"
version = "0.2.2"
[[deps.IniFile]]
git-tree-sha1 = "f550e6e32074c939295eb5ea6de31849ac2c9625"
uuid = "83e8ac13-25f8-5344-8a64-a9f2b223428f"
version = "0.5.1"
[[deps.InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[deps.InverseFunctions]]
deps = ["Test"]
git-tree-sha1 = "49510dfcb407e572524ba94aeae2fced1f3feb0f"
uuid = "3587e190-3f89-42d0-90ee-14403ec27112"
version = "0.1.8"
[[deps.IrrationalConstants]]
git-tree-sha1 = "7fd44fd4ff43fc60815f8e764c0f352b83c49151"
uuid = "92d709cd-6900-40b7-9082-c6be49f344b6"
version = "0.1.1"
[[deps.JLFzf]]
deps = ["Pipe", "REPL", "Random", "fzf_jll"]
git-tree-sha1 = "f377670cda23b6b7c1c0b3893e37451c5c1a2185"
uuid = "1019f520-868f-41f5-a6de-eb00f4b6a39c"
version = "0.1.5"
[[deps.JLLWrappers]]
deps = ["Preferences"]
git-tree-sha1 = "abc9885a7ca2052a736a600f7fa66209f96506e1"
uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210"
version = "1.4.1"
[[deps.JSON]]
deps = ["Dates", "Mmap", "Parsers", "Unicode"]
git-tree-sha1 = "3c837543ddb02250ef42f4738347454f95079d4e"
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
version = "0.21.3"
[[deps.JpegTurbo_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "b53380851c6e6664204efb2e62cd24fa5c47e4ba"
uuid = "aacddb02-875f-59d6-b918-886e6ef4fbf8"
version = "2.1.2+0"
[[deps.LAME_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "f6250b16881adf048549549fba48b1161acdac8c"
uuid = "c1c5ebd0-6772-5130-a774-d5fcae4a789d"
version = "3.100.1+0"
[[deps.LERC_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "bf36f528eec6634efc60d7ec062008f171071434"
uuid = "88015f11-f218-50d7-93a8-a6af411a945d"
version = "3.0.0+1"
[[deps.LZO_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "e5b909bcf985c5e2605737d2ce278ed791b89be6"
uuid = "dd4b983a-f0e5-5f8d-a1b7-129d4a5fb1ac"
version = "2.10.1+0"
[[deps.LaTeXStrings]]
git-tree-sha1 = "f2355693d6778a178ade15952b7ac47a4ff97996"
uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f"
version = "1.3.0"
[[deps.Latexify]]
deps = ["Formatting", "InteractiveUtils", "LaTeXStrings", "MacroTools", "Markdown", "OrderedCollections", "Printf", "Requires"]
git-tree-sha1 = "2422f47b34d4b127720a18f86fa7b1aa2e141f29"
uuid = "23fbe1c1-3f47-55db-b15f-69d7ec21a316"
version = "0.15.18"
[[deps.LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
version = "0.6.3"
[[deps.LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
version = "7.84.0+0"
[[deps.LibGit2]]
deps = ["Base64", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[deps.LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
version = "1.10.2+0"
[[deps.Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[deps.Libffi_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "0b4a5d71f3e5200a7dff793393e09dfc2d874290"
uuid = "e9f186c6-92d2-5b65-8a66-fee21dc1b490"
version = "3.2.2+1"
[[deps.Libgcrypt_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgpg_error_jll", "Pkg"]
git-tree-sha1 = "64613c82a59c120435c067c2b809fc61cf5166ae"
uuid = "d4300ac3-e22c-5743-9152-c294e39db1e4"
version = "1.8.7+0"
[[deps.Libglvnd_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll", "Xorg_libXext_jll"]
git-tree-sha1 = "6f73d1dd803986947b2c750138528a999a6c7733"
uuid = "7e76a0d4-f3c7-5321-8279-8d96eeed0f29"
version = "1.6.0+0"
[[deps.Libgpg_error_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "c333716e46366857753e273ce6a69ee0945a6db9"
uuid = "7add5ba3-2f88-524e-9cd5-f83b8a55f7b8"
version = "1.42.0+0"
[[deps.Libiconv_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "c7cb1f5d892775ba13767a87c7ada0b980ea0a71"
uuid = "94ce4f54-9a6c-5748-9c1c-f9c7231a4531"
version = "1.16.1+2"
[[deps.Libmount_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "9c30530bf0effd46e15e0fdcf2b8636e78cbbd73"
uuid = "4b2f31a3-9ecc-558c-b454-b3730dcb73e9"
version = "2.35.0+0"
[[deps.Libtiff_jll]]
deps = ["Artifacts", "JLLWrappers", "JpegTurbo_jll", "LERC_jll", "Libdl", "Pkg", "Zlib_jll", "Zstd_jll"]
git-tree-sha1 = "3eb79b0ca5764d4799c06699573fd8f533259713"
uuid = "89763e89-9b03-5906-acba-b20f662cd828"
version = "4.4.0+0"
[[deps.Libuuid_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "7f3efec06033682db852f8b3bc3c1d2b0a0ab066"
uuid = "38a345b3-de98-5d2b-a5d3-14cd9215e700"
version = "2.36.0+0"
[[deps.LinearAlgebra]]
deps = ["Libdl", "libblastrampoline_jll"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[deps.LogExpFunctions]]
deps = ["ChainRulesCore", "ChangesOfVariables", "DocStringExtensions", "InverseFunctions", "IrrationalConstants", "LinearAlgebra"]
git-tree-sha1 = "946607f84feb96220f480e0422d3484c49c00239"
uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688"
version = "0.3.19"
[[deps.Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[deps.LoggingExtras]]
deps = ["Dates", "Logging"]
git-tree-sha1 = "cedb76b37bc5a6c702ade66be44f831fa23c681e"
uuid = "e6f89c97-d47a-5376-807f-9c37f3926c36"
version = "1.0.0"
[[deps.MIMEs]]
git-tree-sha1 = "65f28ad4b594aebe22157d6fac869786a255b7eb"
uuid = "6c6e2e6c-3030-632d-7369-2d6c69616d65"
version = "0.1.4"