-
Notifications
You must be signed in to change notification settings - Fork 1
/
arm-asm.c
3235 lines (3021 loc) · 101 KB
/
arm-asm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* ARM specific functions for TCC assembler
*
* Copyright (c) 2001, 2002 Fabrice Bellard
* Copyright (c) 2020 Danny Milosavljevic
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifdef TARGET_DEFS_ONLY
#define CONFIG_TCC_ASM
#define NB_ASM_REGS 16
ST_FUNC void g(int c);
ST_FUNC void gen_le16(int c);
ST_FUNC void gen_le32(int c);
/*************************************************************/
#else
/*************************************************************/
#define USING_GLOBALS
#include "tcc.h"
enum {
OPT_REG32,
OPT_REGSET32,
OPT_IM8,
OPT_IM8N,
OPT_IM32,
OPT_VREG32,
OPT_VREG64,
};
#define OP_REG32 (1 << OPT_REG32)
#define OP_VREG32 (1 << OPT_VREG32)
#define OP_VREG64 (1 << OPT_VREG64)
#define OP_REG (OP_REG32 | OP_VREG32 | OP_VREG64)
#define OP_IM32 (1 << OPT_IM32)
#define OP_IM8 (1 << OPT_IM8)
#define OP_IM8N (1 << OPT_IM8N)
#define OP_REGSET32 (1 << OPT_REGSET32)
typedef struct Operand {
uint32_t type;
union {
uint8_t reg;
uint16_t regset;
ExprValue e;
};
} Operand;
/* Read the VFP register referred to by token T.
If OK, returns its number.
If not OK, returns -1. */
static int asm_parse_vfp_regvar(int t, int double_precision)
{
if (double_precision) {
if (t >= TOK_ASM_d0 && t <= TOK_ASM_d15)
return t - TOK_ASM_d0;
} else {
if (t >= TOK_ASM_s0 && t <= TOK_ASM_s31)
return t - TOK_ASM_s0;
}
return -1;
}
static int asm_parse_vfp_status_regvar(int t)
{
switch (t) {
case TOK_ASM_fpsid:
return 0;
case TOK_ASM_fpscr:
return 1;
case TOK_ASM_fpexc:
return 8;
default:
return -1;
}
}
/* Parse a text containing operand and store the result in OP */
static void parse_operand(TCCState *s1, Operand *op)
{
ExprValue e;
int8_t reg;
uint16_t regset = 0;
op->type = 0;
if (tok == '{') { // regset literal
next(); // skip '{'
while (tok != '}' && tok != TOK_EOF) {
reg = asm_parse_regvar(tok);
if (reg == -1) {
expect("register");
return;
} else
next(); // skip register name
if ((1 << reg) < regset)
tcc_warning("registers will be processed in ascending order by hardware--but are not specified in ascending order here");
regset |= 1 << reg;
if (tok != ',')
break;
next(); // skip ','
}
if (tok != '}')
expect("'}'");
next(); // skip '}'
if (regset == 0) {
// ARM instructions don't support empty regset.
tcc_error("empty register list is not supported");
} else {
op->type = OP_REGSET32;
op->regset = regset;
}
return;
} else if ((reg = asm_parse_regvar(tok)) != -1) {
next(); // skip register name
op->type = OP_REG32;
op->reg = (uint8_t) reg;
return;
} else if ((reg = asm_parse_vfp_regvar(tok, 0)) != -1) {
next(); // skip register name
op->type = OP_VREG32;
op->reg = (uint8_t) reg;
return;
} else if ((reg = asm_parse_vfp_regvar(tok, 1)) != -1) {
next(); // skip register name
op->type = OP_VREG64;
op->reg = (uint8_t) reg;
return;
} else if (tok == '#' || tok == '$') {
/* constant value */
next(); // skip '#' or '$'
}
asm_expr(s1, &e);
op->type = OP_IM32;
op->e = e;
if (!op->e.sym) {
if ((int) op->e.v < 0 && (int) op->e.v >= -255)
op->type = OP_IM8N;
else if (op->e.v == (uint8_t)op->e.v)
op->type = OP_IM8;
} else
expect("operand");
}
/* XXX: make it faster ? */
ST_FUNC void g(int c)
{
int ind1;
if (nocode_wanted)
return;
ind1 = ind + 1;
if (ind1 > cur_text_section->data_allocated)
section_realloc(cur_text_section, ind1);
cur_text_section->data[ind] = c;
ind = ind1;
}
ST_FUNC void gen_le16 (int i)
{
g(i);
g(i>>8);
}
ST_FUNC void gen_le32 (int i)
{
int ind1;
if (nocode_wanted)
return;
ind1 = ind + 4;
if (ind1 > cur_text_section->data_allocated)
section_realloc(cur_text_section, ind1);
cur_text_section->data[ind++] = i & 0xFF;
cur_text_section->data[ind++] = (i >> 8) & 0xFF;
cur_text_section->data[ind++] = (i >> 16) & 0xFF;
cur_text_section->data[ind++] = (i >> 24) & 0xFF;
}
ST_FUNC void gen_expr32(ExprValue *pe)
{
gen_le32(pe->v);
}
static uint32_t condition_code_of_token(int token) {
if (token < TOK_ASM_nopeq) {
expect("condition-enabled instruction");
return 0;
} else
return (token - TOK_ASM_nopeq) & 15;
}
static void asm_emit_opcode(int token, uint32_t opcode) {
gen_le32((condition_code_of_token(token) << 28) | opcode);
}
static void asm_emit_unconditional_opcode(uint32_t opcode) {
gen_le32(opcode);
}
static void asm_emit_coprocessor_opcode(uint32_t high_nibble, uint8_t cp_number, uint8_t cp_opcode, uint8_t cp_destination_register, uint8_t cp_n_operand_register, uint8_t cp_m_operand_register, uint8_t cp_opcode2, int inter_processor_transfer)
{
uint32_t opcode = 0xe000000;
if (inter_processor_transfer)
opcode |= 1 << 4;
//assert(cp_opcode < 16);
opcode |= cp_opcode << 20;
//assert(cp_n_operand_register < 16);
opcode |= cp_n_operand_register << 16;
//assert(cp_destination_register < 16);
opcode |= cp_destination_register << 12;
//assert(cp_number < 16);
opcode |= cp_number << 8;
//assert(cp_information < 8);
opcode |= cp_opcode2 << 5;
//assert(cp_m_operand_register < 16);
opcode |= cp_m_operand_register;
asm_emit_unconditional_opcode((high_nibble << 28) | opcode);
}
static void asm_nullary_opcode(int token)
{
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_nopeq:
asm_emit_opcode(token, 0xd << 21); // mov r0, r0
break;
case TOK_ASM_wfeeq:
asm_emit_opcode(token, 0x320f002);
case TOK_ASM_wfieq:
asm_emit_opcode(token, 0x320f003);
break;
default:
expect("nullary instruction");
}
}
static void asm_unary_opcode(TCCState *s1, int token)
{
Operand op;
parse_operand(s1, &op);
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_swieq:
case TOK_ASM_svceq:
if (op.type != OP_IM8)
expect("immediate 8-bit unsigned integer");
else {
/* Note: Dummy operand (ignored by processor): ARM ref documented 0...255, ARM instruction set documented 24 bit */
asm_emit_opcode(token, (0xf << 24) | op.e.v);
}
break;
default:
expect("unary instruction");
}
}
static void asm_binary_opcode(TCCState *s1, int token)
{
Operand ops[2];
Operand rotation;
uint32_t encoded_rotation = 0;
uint64_t amount;
parse_operand(s1, &ops[0]);
if (tok == ',')
next();
else
expect("','");
parse_operand(s1, &ops[1]);
if (ops[0].type != OP_REG32) {
expect("(destination operand) register");
return;
}
if (ops[0].reg == 15) {
tcc_error("'%s' does not support 'pc' as operand", get_tok_str(token, NULL));
return;
}
if (ops[0].reg == 13)
tcc_warning("Using 'sp' as operand with '%s' is deprecated by ARM", get_tok_str(token, NULL));
if (ops[1].type != OP_REG32) {
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_movteq:
case TOK_ASM_movweq:
if (ops[1].type == OP_IM8 || ops[1].type == OP_IM8N || ops[1].type == OP_IM32) {
if (ops[1].e.v >= 0 && ops[1].e.v <= 0xFFFF) {
uint16_t immediate_value = ops[1].e.v;
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_movteq:
asm_emit_opcode(token, 0x3400000 | (ops[0].reg << 12) | (immediate_value & 0xF000) << 4 | (immediate_value & 0xFFF));
break;
case TOK_ASM_movweq:
asm_emit_opcode(token, 0x3000000 | (ops[0].reg << 12) | (immediate_value & 0xF000) << 4 | (immediate_value & 0xFFF));
break;
}
} else
expect("(source operand) immediate 16 bit value");
} else
expect("(source operand) immediate");
break;
default:
expect("(source operand) register");
}
return;
}
if (ops[1].reg == 15) {
tcc_error("'%s' does not support 'pc' as operand", get_tok_str(token, NULL));
return;
}
if (ops[1].reg == 13)
tcc_warning("Using 'sp' as operand with '%s' is deprecated by ARM", get_tok_str(token, NULL));
if (tok == ',') {
next(); // skip ','
if (tok == TOK_ASM_ror) {
next(); // skip 'ror'
parse_operand(s1, &rotation);
if (rotation.type != OP_IM8) {
expect("immediate value for rotation");
return;
} else {
amount = rotation.e.v;
switch (amount) {
case 8:
encoded_rotation = 1 << 10;
break;
case 16:
encoded_rotation = 2 << 10;
break;
case 24:
encoded_rotation = 3 << 10;
break;
default:
expect("'8' or '16' or '24'");
return;
}
}
}
}
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_clzeq:
if (encoded_rotation)
tcc_error("clz does not support rotation");
asm_emit_opcode(token, 0x16f0f10 | (ops[0].reg << 12) | ops[1].reg);
break;
case TOK_ASM_sxtbeq:
asm_emit_opcode(token, 0x6af0070 | (ops[0].reg << 12) | ops[1].reg | encoded_rotation);
break;
case TOK_ASM_sxtheq:
asm_emit_opcode(token, 0x6bf0070 | (ops[0].reg << 12) | ops[1].reg | encoded_rotation);
break;
case TOK_ASM_uxtbeq:
asm_emit_opcode(token, 0x6ef0070 | (ops[0].reg << 12) | ops[1].reg | encoded_rotation);
break;
case TOK_ASM_uxtheq:
asm_emit_opcode(token, 0x6ff0070 | (ops[0].reg << 12) | ops[1].reg | encoded_rotation);
break;
default:
expect("binary instruction");
}
}
static void asm_coprocessor_opcode(TCCState *s1, int token) {
uint8_t coprocessor;
Operand opcode1;
Operand opcode2;
uint8_t registers[3];
unsigned int i;
uint8_t high_nibble;
uint8_t mrc = 0;
if (tok >= TOK_ASM_p0 && tok <= TOK_ASM_p15) {
coprocessor = tok - TOK_ASM_p0;
next();
} else {
expect("'p<number>'");
return;
}
if (tok == ',')
next();
else
expect("','");
parse_operand(s1, &opcode1);
if (opcode1.type != OP_IM8 || opcode1.e.v > 15) {
tcc_error("opcode1 of instruction '%s' must be an immediate value between 0 and 15", get_tok_str(token, NULL));
return;
}
for (i = 0; i < 3; ++i) {
if (tok == ',')
next();
else
expect("','");
if (i == 0 && token != TOK_ASM_cdp2 && (ARM_INSTRUCTION_GROUP(token) == TOK_ASM_mrceq || ARM_INSTRUCTION_GROUP(token) == TOK_ASM_mcreq)) {
if (tok >= TOK_ASM_r0 && tok <= TOK_ASM_r15) {
registers[i] = tok - TOK_ASM_r0;
next();
} else {
expect("'r<number>'");
return;
}
} else {
if (tok >= TOK_ASM_c0 && tok <= TOK_ASM_c15) {
registers[i] = tok - TOK_ASM_c0;
next();
} else {
expect("'c<number>'");
return;
}
}
}
if (tok == ',') {
next();
parse_operand(s1, &opcode2);
} else {
opcode2.type = OP_IM8;
opcode2.e.v = 0;
}
if (opcode2.type != OP_IM8 || opcode2.e.v > 15) {
tcc_error("opcode2 of instruction '%s' must be an immediate value between 0 and 15", get_tok_str(token, NULL));
return;
}
if (token == TOK_ASM_cdp2) {
high_nibble = 0xF;
asm_emit_coprocessor_opcode(high_nibble, coprocessor, opcode1.e.v, registers[0], registers[1], registers[2], opcode2.e.v, 0);
return;
} else
high_nibble = condition_code_of_token(token);
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_cdpeq:
asm_emit_coprocessor_opcode(high_nibble, coprocessor, opcode1.e.v, registers[0], registers[1], registers[2], opcode2.e.v, 0);
break;
case TOK_ASM_mrceq:
// opcode1 encoding changes! highest and lowest bit gone.
mrc = 1;
/* fallthrough */
case TOK_ASM_mcreq:
// opcode1 encoding changes! highest and lowest bit gone.
if (opcode1.e.v > 7) {
tcc_error("opcode1 of instruction '%s' must be an immediate value between 0 and 7", get_tok_str(token, NULL));
return;
}
asm_emit_coprocessor_opcode(high_nibble, coprocessor, (opcode1.e.v << 1) | mrc, registers[0], registers[1], registers[2], opcode2.e.v, 1);
break;
default:
expect("known instruction");
}
}
/* data processing and single data transfer instructions only */
#define ENCODE_RN(register_index) ((register_index) << 16)
#define ENCODE_RD(register_index) ((register_index) << 12)
#define ENCODE_SET_CONDITION_CODES (1 << 20)
/* Note: For data processing instructions, "1" means immediate.
Note: For single data transfer instructions, "0" means immediate. */
#define ENCODE_IMMEDIATE_FLAG (1 << 25)
#define ENCODE_BARREL_SHIFTER_SHIFT_BY_REGISTER (1 << 4)
#define ENCODE_BARREL_SHIFTER_MODE_LSL (0 << 5)
#define ENCODE_BARREL_SHIFTER_MODE_LSR (1 << 5)
#define ENCODE_BARREL_SHIFTER_MODE_ASR (2 << 5)
#define ENCODE_BARREL_SHIFTER_MODE_ROR (3 << 5)
#define ENCODE_BARREL_SHIFTER_REGISTER(register_index) ((register_index) << 8)
#define ENCODE_BARREL_SHIFTER_IMMEDIATE(value) ((value) << 7)
static void asm_block_data_transfer_opcode(TCCState *s1, int token)
{
uint32_t opcode;
int op0_exclam = 0;
Operand ops[2];
int nb_ops = 1;
parse_operand(s1, &ops[0]);
if (tok == '!') {
op0_exclam = 1;
next(); // skip '!'
}
if (tok == ',') {
next(); // skip comma
parse_operand(s1, &ops[1]);
++nb_ops;
}
if (nb_ops < 1) {
expect("at least one operand");
return;
} else if (ops[nb_ops - 1].type != OP_REGSET32) {
expect("(last operand) register list");
return;
}
// block data transfer: 1 0 0 P U S W L << 20 (general case):
// operands:
// Rn: bits 19...16 base register
// Register List: bits 15...0
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_pusheq: // TODO: Optimize 1-register case to: str ?, [sp, #-4]!
// Instruction: 1 I=0 P=1 U=0 S=0 W=1 L=0 << 20, op 1101
// operands:
// Rn: base register
// Register List: bits 15...0
if (nb_ops != 1)
expect("exactly one operand");
else
asm_emit_opcode(token, (0x92d << 16) | ops[0].regset); // TODO: base register ?
break;
case TOK_ASM_popeq: // TODO: Optimize 1-register case to: ldr ?, [sp], #4
// Instruction: 1 I=0 P=0 U=1 S=0 W=0 L=1 << 20, op 1101
// operands:
// Rn: base register
// Register List: bits 15...0
if (nb_ops != 1)
expect("exactly one operand");
else
asm_emit_opcode(token, (0x8bd << 16) | ops[0].regset); // TODO: base register ?
break;
case TOK_ASM_stmdaeq:
case TOK_ASM_ldmdaeq:
case TOK_ASM_stmeq:
case TOK_ASM_ldmeq:
case TOK_ASM_stmiaeq:
case TOK_ASM_ldmiaeq:
case TOK_ASM_stmdbeq:
case TOK_ASM_ldmdbeq:
case TOK_ASM_stmibeq:
case TOK_ASM_ldmibeq:
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_stmdaeq: // post-decrement store
opcode = 0x80 << 20;
break;
case TOK_ASM_ldmdaeq: // post-decrement load
opcode = 0x81 << 20;
break;
case TOK_ASM_stmeq: // post-increment store
case TOK_ASM_stmiaeq: // post-increment store
opcode = 0x88 << 20;
break;
case TOK_ASM_ldmeq: // post-increment load
case TOK_ASM_ldmiaeq: // post-increment load
opcode = 0x89 << 20;
break;
case TOK_ASM_stmdbeq: // pre-decrement store
opcode = 0x90 << 20;
break;
case TOK_ASM_ldmdbeq: // pre-decrement load
opcode = 0x91 << 20;
break;
case TOK_ASM_stmibeq: // pre-increment store
opcode = 0x98 << 20;
break;
case TOK_ASM_ldmibeq: // pre-increment load
opcode = 0x99 << 20;
break;
default:
tcc_error("internal error: This place should not be reached (fallback in asm_block_data_transfer_opcode)");
}
// operands:
// Rn: first operand
// Register List: lower bits
if (nb_ops != 2)
expect("exactly two operands");
else if (ops[0].type != OP_REG32)
expect("(first operand) register");
else {
if (op0_exclam)
opcode |= 1 << 21; // writeback
asm_emit_opcode(token, opcode | ENCODE_RN(ops[0].reg) | ops[1].regset);
}
break;
default:
expect("block data transfer instruction");
}
}
/* Parses shift directive and returns the parts that would have to be set in the opcode because of it.
Does not encode the actual shift amount.
It's not an error if there is no shift directive.
NB_SHIFT: will be set to 1 iff SHIFT is filled. Note that for rrx, there's no need to fill SHIFT.
SHIFT: will be filled in with the shift operand to use, if any. */
static uint32_t asm_parse_optional_shift(TCCState* s1, int* nb_shift, Operand* shift)
{
uint32_t opcode = 0;
*nb_shift = 0;
switch (tok) {
case TOK_ASM_asl:
case TOK_ASM_lsl:
case TOK_ASM_asr:
case TOK_ASM_lsr:
case TOK_ASM_ror:
switch (tok) {
case TOK_ASM_asl:
/* fallthrough */
case TOK_ASM_lsl:
opcode = ENCODE_BARREL_SHIFTER_MODE_LSL;
break;
case TOK_ASM_asr:
opcode = ENCODE_BARREL_SHIFTER_MODE_ASR;
break;
case TOK_ASM_lsr:
opcode = ENCODE_BARREL_SHIFTER_MODE_LSR;
break;
case TOK_ASM_ror:
opcode = ENCODE_BARREL_SHIFTER_MODE_ROR;
break;
}
next();
parse_operand(s1, shift);
*nb_shift = 1;
break;
case TOK_ASM_rrx:
next();
opcode = ENCODE_BARREL_SHIFTER_MODE_ROR;
break;
}
return opcode;
}
static uint32_t asm_encode_shift(Operand* shift)
{
uint64_t amount;
uint32_t operands = 0;
switch (shift->type) {
case OP_REG32:
if (shift->reg == 15)
tcc_error("r15 cannot be used as a shift count");
else {
operands = ENCODE_BARREL_SHIFTER_SHIFT_BY_REGISTER;
operands |= ENCODE_BARREL_SHIFTER_REGISTER(shift->reg);
}
break;
case OP_IM8:
amount = shift->e.v;
if (amount > 0 && amount < 32)
operands = ENCODE_BARREL_SHIFTER_IMMEDIATE(amount);
else
tcc_error("shift count out of range");
break;
default:
tcc_error("unknown shift amount");
}
return operands;
}
static void asm_data_processing_opcode(TCCState *s1, int token)
{
Operand ops[3];
int nb_ops;
Operand shift = {0};
int nb_shift = 0;
uint32_t operands = 0;
/* modulo 16 entries per instruction for the different condition codes */
uint32_t opcode_idx = (ARM_INSTRUCTION_GROUP(token) - TOK_ASM_andeq) >> 4;
uint32_t opcode_nos = opcode_idx >> 1; // without "s"; "OpCode" in ARM docs
for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ) {
if (tok == TOK_ASM_asl || tok == TOK_ASM_lsl || tok == TOK_ASM_lsr || tok == TOK_ASM_asr || tok == TOK_ASM_ror || tok == TOK_ASM_rrx)
break;
parse_operand(s1, &ops[nb_ops]);
++nb_ops;
if (tok != ',')
break;
next(); // skip ','
}
if (tok == ',')
next();
operands |= asm_parse_optional_shift(s1, &nb_shift, &shift);
if (nb_ops < 2)
expect("at least two operands");
else if (nb_ops == 2) {
memcpy(&ops[2], &ops[1], sizeof(ops[1])); // move ops[2]
memcpy(&ops[1], &ops[0], sizeof(ops[0])); // ops[1] was implicit
nb_ops = 3;
} else if (nb_ops == 3) {
if (opcode_nos == 0xd || opcode_nos == 0xf || opcode_nos == 0xa || opcode_nos == 0xb || opcode_nos == 0x8 || opcode_nos == 0x9) { // mov, mvn, cmp, cmn, tst, teq
tcc_error("'%s' cannot be used with three operands", get_tok_str(token, NULL));
return;
}
}
if (nb_ops != 3) {
expect("two or three operands");
return;
} else {
uint32_t opcode = 0;
uint32_t immediate_value;
uint8_t half_immediate_rotation;
if (nb_shift && shift.type == OP_REG32) {
if ((ops[0].type == OP_REG32 && ops[0].reg == 15) ||
(ops[1].type == OP_REG32 && ops[1].reg == 15)) {
tcc_error("Using the 'pc' register in data processing instructions that have a register-controlled shift is not implemented by ARM");
return;
}
}
// data processing (general case):
// operands:
// Rn: bits 19...16 (first operand)
// Rd: bits 15...12 (destination)
// Operand2: bits 11...0 (second operand); depending on I that's either a register or an immediate
// operator:
// bits 24...21: "OpCode"--see below
/* operations in the token list are ordered by opcode */
opcode = opcode_nos << 21; // drop "s"
if (ops[0].type != OP_REG32)
expect("(destination operand) register");
else if (opcode_nos == 0xa || opcode_nos == 0xb || opcode_nos == 0x8 || opcode_nos == 0x9) // cmp, cmn, tst, teq
operands |= ENCODE_SET_CONDITION_CODES; // force S set, otherwise it's a completely different instruction.
else
operands |= ENCODE_RD(ops[0].reg);
if (ops[1].type != OP_REG32)
expect("(first source operand) register");
else if (!(opcode_nos == 0xd || opcode_nos == 0xf)) // not: mov, mvn (those have only one source operand)
operands |= ENCODE_RN(ops[1].reg);
switch (ops[2].type) {
case OP_REG32:
operands |= ops[2].reg;
break;
case OP_IM8:
case OP_IM32:
operands |= ENCODE_IMMEDIATE_FLAG;
immediate_value = ops[2].e.v;
for (half_immediate_rotation = 0; half_immediate_rotation < 16; ++half_immediate_rotation) {
if (immediate_value >= 0x00 && immediate_value < 0x100)
break;
// rotate left by two
immediate_value = ((immediate_value & 0x3FFFFFFF) << 2) | ((immediate_value & 0xC0000000) >> 30);
}
if (half_immediate_rotation >= 16) {
/* fallthrough */
} else {
operands |= immediate_value;
operands |= half_immediate_rotation << 8;
break;
}
case OP_IM8N: // immediate negative value
operands |= ENCODE_IMMEDIATE_FLAG;
immediate_value = ops[2].e.v;
/* Instruction swapping:
0001 = EOR - Rd:= Op1 EOR Op2 -> difficult
0011 = RSB - Rd:= Op2 - Op1 -> difficult
0111 = RSC - Rd:= Op2 - Op1 + C -> difficult
1000 = TST - CC on: Op1 AND Op2 -> difficult
1001 = TEQ - CC on: Op1 EOR Op2 -> difficult
1100 = ORR - Rd:= Op1 OR Op2 -> difficult
*/
switch (opcode_nos) {
case 0x0: // AND - Rd:= Op1 AND Op2
opcode = 0xe << 21; // BIC
immediate_value = ~immediate_value;
break;
case 0x2: // SUB - Rd:= Op1 - Op2
opcode = 0x4 << 21; // ADD
immediate_value = -immediate_value;
break;
case 0x4: // ADD - Rd:= Op1 + Op2
opcode = 0x2 << 21; // SUB
immediate_value = -immediate_value;
break;
case 0x5: // ADC - Rd:= Op1 + Op2 + C
opcode = 0x6 << 21; // SBC
immediate_value = ~immediate_value;
break;
case 0x6: // SBC - Rd:= Op1 - Op2 + C
opcode = 0x5 << 21; // ADC
immediate_value = ~immediate_value;
break;
case 0xa: // CMP - CC on: Op1 - Op2
opcode = 0xb << 21; // CMN
immediate_value = -immediate_value;
break;
case 0xb: // CMN - CC on: Op1 + Op2
opcode = 0xa << 21; // CMP
immediate_value = -immediate_value;
break;
case 0xd: // MOV - Rd:= Op2
opcode = 0xf << 21; // MVN
immediate_value = ~immediate_value;
break;
case 0xe: // BIC - Rd:= Op1 AND NOT Op2
opcode = 0x0 << 21; // AND
immediate_value = ~immediate_value;
break;
case 0xf: // MVN - Rd:= NOT Op2
opcode = 0xd << 21; // MOV
immediate_value = ~immediate_value;
break;
default:
tcc_error("cannot use '%s' with a negative immediate value", get_tok_str(token, NULL));
}
for (half_immediate_rotation = 0; half_immediate_rotation < 16; ++half_immediate_rotation) {
if (immediate_value >= 0x00 && immediate_value < 0x100)
break;
// rotate left by two
immediate_value = ((immediate_value & 0x3FFFFFFF) << 2) | ((immediate_value & 0xC0000000) >> 30);
}
if (half_immediate_rotation >= 16) {
immediate_value = ops[2].e.v;
tcc_error("immediate value 0x%X cannot be encoded into ARM immediate", (unsigned) immediate_value);
return;
}
operands |= immediate_value;
operands |= half_immediate_rotation << 8;
break;
default:
expect("(second source operand) register or immediate value");
}
if (nb_shift) {
if (operands & ENCODE_IMMEDIATE_FLAG)
tcc_error("immediate rotation not implemented");
else
operands |= asm_encode_shift(&shift);
}
/* S=0 and S=1 entries alternate one after another, in that order */
opcode |= (opcode_idx & 1) ? ENCODE_SET_CONDITION_CODES : 0;
asm_emit_opcode(token, opcode | operands);
}
}
static void asm_shift_opcode(TCCState *s1, int token)
{
Operand ops[3];
int nb_ops;
int definitely_neutral = 0;
uint32_t opcode = 0xd << 21; // MOV
uint32_t operands = 0;
for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ++nb_ops) {
parse_operand(s1, &ops[nb_ops]);
if (tok != ',') {
++nb_ops;
break;
}
next(); // skip ','
}
if (nb_ops < 2) {
expect("at least two operands");
return;
}
if (ops[0].type != OP_REG32) {
expect("(destination operand) register");
return;
} else
operands |= ENCODE_RD(ops[0].reg);
if (nb_ops == 2) {
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_rrxseq:
opcode |= ENCODE_SET_CONDITION_CODES;
/* fallthrough */
case TOK_ASM_rrxeq:
if (ops[1].type == OP_REG32) {
operands |= ops[1].reg;
operands |= ENCODE_BARREL_SHIFTER_MODE_ROR;
asm_emit_opcode(token, opcode | operands);
} else
tcc_error("(first source operand) register");
return;
default:
memcpy(&ops[2], &ops[1], sizeof(ops[1])); // move ops[2]
memcpy(&ops[1], &ops[0], sizeof(ops[0])); // ops[1] was implicit
nb_ops = 3;
}
}
if (nb_ops != 3) {
expect("two or three operands");
return;
}
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_lslseq:
case TOK_ASM_lsrseq:
case TOK_ASM_asrseq:
case TOK_ASM_rorseq:
opcode |= ENCODE_SET_CONDITION_CODES;
break;
}
switch (ops[1].type) {
case OP_REG32:
operands |= ops[1].reg;
break;
case OP_IM8:
operands |= ENCODE_IMMEDIATE_FLAG;
operands |= ops[1].e.v;
tcc_error("Using an immediate value as the source operand is not possible with '%s' instruction on ARM", get_tok_str(token, NULL));
return;
}
switch (ops[2].type) {
case OP_REG32:
if ((ops[0].type == OP_REG32 && ops[0].reg == 15) ||
(ops[1].type == OP_REG32 && ops[1].reg == 15)) {
tcc_error("Using the 'pc' register in data processing instructions that have a register-controlled shift is not implemented by ARM");
}
operands |= asm_encode_shift(&ops[2]);
break;
case OP_IM8:
if (ops[2].e.v)
operands |= asm_encode_shift(&ops[2]);
else
definitely_neutral = 1;
break;
}
if (!definitely_neutral) switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_lslseq:
case TOK_ASM_lsleq:
operands |= ENCODE_BARREL_SHIFTER_MODE_LSL;
break;
case TOK_ASM_lsrseq:
case TOK_ASM_lsreq:
operands |= ENCODE_BARREL_SHIFTER_MODE_LSR;
break;
case TOK_ASM_asrseq:
case TOK_ASM_asreq:
operands |= ENCODE_BARREL_SHIFTER_MODE_ASR;
break;
case TOK_ASM_rorseq:
case TOK_ASM_roreq:
operands |= ENCODE_BARREL_SHIFTER_MODE_ROR;
break;
default:
expect("shift instruction");
return;
}
asm_emit_opcode(token, opcode | operands);
}
static void asm_multiplication_opcode(TCCState *s1, int token)
{
Operand ops[4];
int nb_ops = 0;
uint32_t opcode = 0x90;
for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ++nb_ops) {
parse_operand(s1, &ops[nb_ops]);
if (tok != ',') {
++nb_ops;
break;
}
next(); // skip ','
}
if (nb_ops < 2)
expect("at least two operands");
else if (nb_ops == 2) {
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_mulseq:
case TOK_ASM_muleq:
memcpy(&ops[2], &ops[0], sizeof(ops[1])); // ARM is actually like this!
break;
default:
expect("at least three operands");
return;
}
nb_ops = 3;
}
// multiply (special case):
// operands:
// Rd: bits 19...16
// Rm: bits 3...0
// Rs: bits 11...8
// Rn: bits 15...12
if (ops[0].type == OP_REG32)
opcode |= ops[0].reg << 16;
else
expect("(destination operand) register");
if (ops[1].type == OP_REG32)
opcode |= ops[1].reg;
else
expect("(first source operand) register");
if (ops[2].type == OP_REG32)