-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathclassifier.py
75 lines (61 loc) · 1.89 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
import Keras
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten
from keras.preprocessing.image import ImageDataGenerator
def create_model():
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same', activation='relu', input_shape=(256, 256, 3)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='softmax'))
return model
train_generator = ImageDataGenerator(
data_format="channels_last",
rescale = 1. / 255
)
train_batches = train_generator.flow_from_directory(
batch_size=32,
directory='./dataset/train',
target_size=(256, 256),
class_mode='binary'
)
validation_generator = ImageDataGenerator(
data_format="channels_last",
rescale = 1. / 255
)
validation_batches = validation_generator.flow_from_directory(
batch_size=32,
directory='./dataset/validation',
target_size=(256, 256),
class_mode='binary'
)
model = create_model()
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# Starts training the model
model.fit_generator(train_batches,
epochs=15,
verbose=1,
steps_per_epoch=len(train_batches),
validation_data=validation_batches,
initial_epoch=0,
validation_steps=len(validation_batches)
)
test_generator = ImageDataGenerator(
data_format='channels_last',
rescale=1./255
)
test_batches = test_generator.flow_from_directory(
batch_size=1,
directory='./dataset/test',
target_size=[256, 256],
class_mode='binary'
)
score = model.evaluate_generator(test_batches, verbose=1)
print(model.metrics_names)
print('test dataset: ' + str(score))