forked from spectraldoy/music-transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing.py
266 lines (227 loc) · 10.5 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
"""
Copyright 2021 Aditya Gomatam.
This file is part of music-transformer (https://github.com/spectraldoy/music-transformer), my project to build and
train a Music Transformer. music-transformer is open-source software licensed under the terms of the GNU General
Public License v3.0. music-transformer is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version. music-transformer is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details. A copy of this license can be found within the GitHub repository
for music-transformer, or at https://www.gnu.org/licenses/gpl-3.0.html.
"""
import os
import argparse
import torch
import torch.nn.functional as F
from random import randint, sample
from sys import exit
from vocabulary import *
from tokenizer import *
import glob
import math
"""
Functionality to preprocess MIDI files translated into indices in the event vocabulary from command line
"""
def sample_end_data(seqs, lth, factor=6):
"""
Randomly samples sequences of length ~lth from an input set of sequences seqs. Prepares data for augmentation.
Returns a list. Deliberately samples from the end so that model learns to end.
Args:
seqs (list): list of sequences in the event vocabulary
lth (int): approximate length to cut sequences into
factor (int): factor to vary range of output lengths; Default: 6. Higher factor will narrow the output range
Returns:
input sequs cut to length ~lth
"""
data = []
for seq in seqs:
lower_bound = max(len(seq) - lth, 0)
idx = randint(lower_bound, lower_bound + lth // factor)
data.append(seq[idx:])
return data
def sample_data(seqs, lth, factor=6):
"""
Randomly samples sequences of length ~lth from an input set of sequences seqs. Prepares data for augmentation.
Returns a list.
Args:
seqs (list): list of sequences in the event vocabulary
lth (int): approximate length to cut sequences into
factor (int): factor to vary range of output lengths; Default: 6. Higher factor will narrow the output range
Returns:
input sequs cut to length ~lth
"""
data = []
for seq in seqs:
length = randint(lth - lth // factor, lth + lth // factor)
idx = randint(0, max(0, len(seq) - length))
data.append(seq[idx:idx+length])
return data
def aug(data, note_shifts=None, time_stretches=None, verbose=False, lth=100):
"""
Augments data up and down in pitch by note_shifts and faster and slower in time by time_stretches. Adds start
and end tokens and pads to max sequence length in data
Args:
data (list of lists of ints): sequences to augment
note_shifts (list): pitch transpositions to be made
time_stretches (list): stretches in time to be made
verbose (bool): set to True to periodically print augmentation progress
Returns:
input data with pitch transpositions and time stretches, concatendated to one tensor
"""
if note_shifts is None:
note_shifts = torch.arange(-2, 3)
if time_stretches is None:
time_stretches = [1, 1.05, 1.1]
if any([i <= 0 for i in time_stretches]):
raise ValueError("time_stretches must all be positive")
# preprocess the time stretches
if 1 not in time_stretches:
time_stretches.append(1)
ts = []
for t in time_stretches:
ts.append(t) if t not in ts else None
ts.append(1 / t) if (t != 1 and 1 / t not in ts) else None
ts.sort()
time_stretches = ts
# iteratively transpose and append the sequences
note_shifted_data = []
count = 0 # to print if verbose
for seq in data:
# data will be transposed by each shift in note_shifts
for shift in note_shifts:
# check torch tensor
try:
_shift = shift.item()
except AttributeError:
_shift = shift
# iterate over and shift seq
note_shifted_seq = []
for idx in seq:
_idx = idx + _shift # shift the index
# append only note values if changed, and don't go out of bounds of note events
if (0 < idx <= note_on_events and 0 < _idx <= note_on_events) or \
(note_on_events < idx <= note_events and note_on_events < _idx <= note_events):
note_shifted_seq.append(_idx)
else:
note_shifted_seq.append(idx)
# verbose statement
count += 1
print(f"Transposed {count} sequences") if verbose else None
# convert to tensor and append to data
note_shifted_seq = torch.LongTensor(note_shifted_seq)
note_shifted_data.append(note_shifted_seq)
# now iterate over the note shifted data to stretch it in time
time_stretched_data = []
delta_time = 0 # helper
count = 0 # to print if verbose
for seq in note_shifted_data:
# data will be stretched in time by each time_stretch
for time_stretch in time_stretches:
# iterate over and stretch time shift events in seq
time_stretched_seq = []
for idx in seq:
if note_events < idx <= note_events + time_shift_events:
# acculumate stretched times
time = idx - (note_events - 1)
delta_time += round_(time * DIV * time_stretch)
else:
time_to_events(delta_time, index_list=time_stretched_seq)
delta_time = 0
time_stretched_seq.append(idx)
# verbose statement
count += 1
print(f"Stretched {count} sequences") if verbose else None
# convert to tensor and append to data
time_stretched_seq = torch.LongTensor(time_stretched_seq)
time_stretched_data.append(time_stretched_seq)
# preface and suffix with start and end tokens
aug_data = []
seq_max_len = lth + lth
for seq in time_stretched_data:
padded_data = F.pad(F.pad(seq, (1, 0), value=start_token), (0, 1), value=end_token)
if padded_data.shape[0] > seq_max_len:
print(f"Max Legth Exceeded: {seq_max_len}")
continue
aug_data.append(padded_data)
time_stretched_data = []
# pad all sequences to max length
aug_data = torch.nn.utils.rnn.pad_sequence(aug_data, padding_value=pad_token).transpose(-1, -2)
return aug_data
def randomly_sample_aug_data(aug_data, k, augs=25):
"""
Randomly samples k sets of augmented data to cut down dataset
Args:
aug_data (torch.Tensor): augmented dataset
k (int): coefficient such that k * augs samples are returned
augs (int): total number of augmentations per sequence performed on original dataset
"""
random_indices = sample(range(len(aug_data) // augs), k=k)
out = torch.cat(
[t[i * augs:i * augs + augs] for i in random_indices],
dim=0
)
return out
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="preprocessing.py",
description="Preprocess MIDI files into single tensor for ML"
)
parser.add_argument("source", help="source directory of MIDI files to preprocess")
parser.add_argument("destination", help="destination path at which to save preprocessed data as a single tensor, "
"including filename and extension")
parser.add_argument("length", help="approximate sequence length to cut data into (length will be randomly sampled)",
type=int)
parser.add_argument("-a", "--from-augmented-data", help="flag to specify whether or not the source contains "
"already augmented data", action="store_true")
parser.add_argument("-t", "--transpositions", help="list of pitch transpositions to make in data augmentation",
nargs="+", type=int)
parser.add_argument("-s", "--time-stretches", help="list of stretches in time to make in data augmentation",
nargs="+", type=float)
parser.add_argument("-v", "--verbose", help="verbose output flag", action="store_true")
args = parser.parse_args()
# fix source directory if necessary
if args.source[-1] != "/":
args.source += "/"
# if source directory doesn't exist, exit
if not os.path.isdir(args.source):
print("Error: source must be an existing directory")
exit(1)
# fix save path if necessary
if os.path.isdir(args.destination):
if args.destination[-1] != "/":
args.destination += "/"
args.destination += "gnershk.pt"
elif not (args.destination.endswith(".pt") or args.destination.endswith(".pth")):
args.destination += ".pt"
# turn length into int
args.length = int(args.length)
DATA = []
PATH = args.source
# load parsed midi files
if not args.from_augmented_data:
print("Translating midi files to event vocabulary (NOTE: may take a while)...") if args.verbose else None
for file in glob.iglob(PATH + '**/*.mid*', recursive=True):
print(file) if args.verbose else None
try:
idx_list = midi_parser(fname=file)[0]
DATA.append(idx_list)
except (OSError, ValueError, EOFError) as ex:
print(f"{type(ex).__name__} was raised: {ex}")
pass
print("Done!") if args.verbose else None
# randomly sample endings
print("Randomly sampling and cutting data to length...") if args.verbose else None
DATA = sample_data(DATA, lth=args.length) + sample_end_data(DATA, lth=args.length)
print("Done!") if args.verbose else None
# augment data
if not args.from_augmented_data:
print("Augmenting data (NOTE: may take even longer)...") if args.verbose else None
DATA = aug(DATA, note_shifts=args.transpositions, time_stretches=args.time_stretches,
verbose=(args.verbose >= 2), lth=args.length)
print("Done!") if args.verbose else None
# shuffle data
DATA = DATA[torch.randperm(DATA.shape[0])]
# save
print("Saving...") if args.verbose else None
torch.save(DATA, args.destination)
print("Done!")