forked from open-mmlab/mmagic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ggan_lsgan-archi_lr1e-4-1xb128-20Mimgs_lsun-bedroom-64x64.py
75 lines (64 loc) · 1.93 KB
/
ggan_lsgan-archi_lr1e-4-1xb128-20Mimgs_lsun-bedroom-64x64.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
_base_ = [
'../_base_/datasets/unconditional_imgs_64x64.py',
'../_base_/gen_default_runtime.py'
]
model = dict(
type='GGAN',
noise_size=1024,
data_preprocessor=dict(type='DataPreprocessor'),
generator=dict(type='LSGANGenerator', output_scale=64),
discriminator=dict(type='LSGANDiscriminator', input_scale=64))
# define dataset
batch_size = 128
data_root = 'data/lsun/images/bedroom_train'
train_dataloader = dict(
batch_size=batch_size, dataset=dict(data_root=data_root))
val_dataloader = dict(batch_size=batch_size, dataset=dict(data_root=data_root))
test_dataloader = dict(
batch_size=batch_size, dataset=dict(data_root=data_root))
optim_wrapper = dict(
generator=dict(optimizer=dict(type='Adam', lr=0.0001, betas=(0.5, 0.99))),
discriminator=dict(
optimizer=dict(type='Adam', lr=0.0001, betas=(0.5, 0.99))))
default_hooks = dict(
checkpoint=dict(
max_keep_ckpts=20,
save_best=['FID-Full-50k/fid', 'swd/avg', 'ms-ssim/avg'],
rule=['less', 'less', 'greater']))
# VIS_HOOK
custom_hooks = [
dict(
type='VisualizationHook',
interval=5000,
fixed_input=True,
vis_kwargs_list=dict(type='GAN', name='fake_img'))
]
train_cfg = dict(max_iters=160000)
# METRICS
metrics = [
dict(
type='FrechetInceptionDistance',
prefix='FID-Full-50k',
fake_nums=50000,
inception_style='StyleGAN',
sample_model='orig'),
dict(
type='MS_SSIM', prefix='ms-ssim', fake_nums=10000,
sample_model='orig'),
dict(
type='SWD',
prefix='swd',
fake_nums=16384,
sample_model='orig',
image_shape=(3, 64, 64))
]
val_metrics = [
dict(
type='FrechetInceptionDistance',
prefix='FID-Full-50k',
fake_nums=50000,
inception_style='StyleGAN',
sample_model='orig'),
]
val_evaluator = dict(metrics=val_metrics)
test_evaluator = dict(metrics=metrics)