From 78e5e17dfa1cfa7a23df54dd5a1c42bae967091d Mon Sep 17 00:00:00 2001 From: Andreas Dutzler Date: Wed, 27 Sep 2023 14:26:54 +0200 Subject: [PATCH] Update example_neohooke.md --- docs/examples/example_neohooke.md | 54 +++++++++++++++++++++++-------- 1 file changed, 41 insertions(+), 13 deletions(-) diff --git a/docs/examples/example_neohooke.md b/docs/examples/example_neohooke.md index 2dbdd16..a092e72 100644 --- a/docs/examples/example_neohooke.md +++ b/docs/examples/example_neohooke.md @@ -9,7 +9,7 @@ parent: Examples This is a very basic example on how to implement a nearly-incompressible version of the Neo-Hookean material model in a commercial FEM package (HYPELA2 for Marc). As no special two- or three-field variational principle is used in this example, it is not suitable for nearly-incompressible material behaviour. Otherwise the elements tend to show excessive volumetric locking during deformation and hence, wrong results are calculated. -The strain energy density function per unit reference volume is additively splitted into an isochoric and volumetric contribution, see $$\eqref{eq:psi}$$. The first one is assumed to be proportional to the first invariant of the isochoric part of the right Cauchy-Green deformation tensor whereas the volumetric part is only a function of the volumetric ratio (the determinant of the deformation gradient). +The strain energy density function per unit reference volume is additively splitted into an isochoric and volumetric contribution, see Eq. $$\eqref{eq:psi}$$. The first one is assumed to be proportional to the first invariant of the isochoric part of the right Cauchy-Green deformation tensor whereas the volumetric part is only a function of the volumetric ratio (the determinant of the deformation gradient), see Eq. $$\eqref{eq:psi-nh}$$. $$ \begin{equation} @@ -25,25 +25,53 @@ $$ \end{equation} $$ - +We get the second Piola-Kirchhoff stress with the derivative of the strain energy density function per unit reference volume with respect to one half of the right Cauchy-Green deformation tensor as shown in Eq. $$\eqref{eq:pk2-nh}$$. -We get the second Piola-Kirchhoff stress with the derivative of the helmholtz free energy per unit reference volume with respect to one half of the right Cauchy-Green deformation tensor: - - +$$ +\begin{equation} + \mathbf{S} = \frac{\partial \psi(\mathbf{C})}{\partial \frac{1}{2}\mathbf{C}} + \label{eq:pk2} +\end{equation} +$$ - +$$ +\begin{equation} + \mathbf{S} = 2\text{C}_{10} \ \text{dev}(\hat{\mathbf{C}}) \mathbf{C}^{-1} + \kappa (J-1) J \mathbf{C}^{-1} + \label{eq:pk2-nh} +\end{equation} +$$ -By evaluating the derivative of the stress with respect to one half of the right Cauchy-Green deformation tensor we get the material elasticity tensor: +By evaluating the derivative of the stress with respect to one half of the right Cauchy-Green deformation tensor we get the material elasticity tensor, see Eq. $$\eqref{eq:c4-nh}$$, - +$$ +\begin{equation} + \mathbb{C} = \frac{\partial \mathbf{S}}{\partial\frac{1}{2}\mathbf{C}} + \label{eq:c4} +\end{equation} +$$ - +$$ +\begin{equation} + \mathbb{C} = 2\text{C}_{10} J^{-2/3} \frac{2}{3} \ (\text{tr}(\mathbf{C}) \ \mathbb{I} - \mathbf{1} \otimes \mathbf{C}^{-1} - \mathbf{C}^{-1} \otimes \mathbf{1} + \frac{1}{3} \text{tr}(\mathbf{C}) \ \mathbf{C}^{-1} \otimes \mathbf{C}^{-1}) + \left(\kappa (J-1) J + \kappa J^2\right) \ \mathbf{C}^{-1} \otimes \mathbf{C}^{-1} - 2 \kappa (J-1) J \ \mathbb{I} + \label{eq:c4-nh} +\end{equation} +$$ -with the fourth order identity tensor +with the fourth order identity tensor in Eq. $$\eqref{eq:i4}$$. - +$$ +\begin{equation} + \mathbb{I}= \mathbf{C}^{-1} \odot \mathbf{C}^{-1} + \label{eq:i4} +\end{equation} +$$ - +$$ +\begin{equation} + \mathbf{C}^{-1} = \mathbb{I} : \mathbf{C} + \label{eq:i4-projection} +\end{equation} +$$ The two equations are now implemented in a Total Lagrange user subroutine with the help of this Tensor module as follows: @@ -114,4 +142,4 @@ The two equations are now implemented in a Total Lagrange user subroutine with end ``` -There are also examples for a [basic understandig of the tensor toolbox](examples/script_umat.f), the implementation of the [St.Venant Kirchhoff material](example_stvenantkirchhoff.md) and a [full featured MSC.Marc Neo-Hookean material HYPELA2 user subroutine](examples/hypela2_nh_ttb.f). +There are also examples for a [basic understandig of the tensor toolbox](examples/script_umat.f), the implementation of the [St.Venant Kirchhoff material](example_stvenantkirchhoff.md) and a [full featured Marc Neo-Hookean material HYPELA2 user subroutine](examples/hypela2_nh_ttb.f).