-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGazesup_roberta_model.py
861 lines (739 loc) · 35.2 KB
/
Gazesup_roberta_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.functional import softmax
import torch.distributed as dist
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
import numpy as np
from torch.nn.utils.rnn import pad_sequence
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
import transformers
from transformers import RobertaTokenizer, BertConfig, AutoConfig
from transformers.models.roberta.modeling_roberta import RobertaPreTrainedModel, RobertaModel, RobertaClassificationHead
from transformers.models.bert.modeling_bert import BertPreTrainedModel, BertModel, BertLMPredictionHead
from transformers.activations import gelu
from transformers.file_utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from transformers.modeling_outputs import SequenceClassifierOutput
from torch.utils import model_zoo
class SP_Encoder(nn.Module):
"""
Head for intergrating the scanpath module.
"""
def __init__(self, config):
super().__init__()
self.sp_gen_model = Eyettention(config)
#self.sp_gen_model.load_state_dict(torch.load('roberta_Eyettention_english.pth', map_location='cpu'))
self.sp_gen_model.load_state_dict(model_zoo.load_url('https://github.com/aeye-lab/ACL-GazeSupervisedLM/releases/download/v1.0/roberta_Eyettention_english.pth', map_location='cpu'))
# #freeze the parameters in scanpath generation model
# for param in self.sp_gen_model.parameters():
# param.requires_grad = False
self.gru = nn.GRU(input_size=config.hidden_size,
hidden_size=config.hidden_size,
num_layers=1,
batch_first=True,
bidirectional=False)
self.dropout = nn.Dropout(0.1)
def convert_word_pos_seq_to_token_pos_seq(self,
word_pos,
sn_len,
word_ids_sn
):
num_sent = word_pos.size(1)
#Find the number "sn_len+1" -> the end point
word_pos_1 = word_pos[:,0]
sn_len_1 = sn_len[:,0]
stop_mask_1 = (word_pos_1 == (sn_len_1+1).unsqueeze(1))
stop_mask_1 = ~(stop_mask_1.cumsum(dim=1).cumsum(dim=1) == 1).cumsum(dim=1).bool()
if num_sent == 2:
word_pos_2 = word_pos[:,1]
sn_len_2 = sn_len[:,1]
stop_mask_2 = (word_pos_2 == (sn_len_2+1).unsqueeze(1))
stop_mask_2 = ~(stop_mask_2.cumsum(dim=1).cumsum(dim=1) == 1).cumsum(dim=1).bool()
SEP_indx = sn_len_1 + 1
#compute gaze token position
token_ids_sn = torch.arange(word_ids_sn.shape[1]).unsqueeze(0).expand(word_ids_sn.shape[0],-1).to(word_pos.device)
word_ids_2_token_ids_sn = token_ids_sn - word_ids_sn
gaze_token_pos = []
for b in range(word_pos.shape[0]):
#remove invalid predictions + SEP token
valid_pos_seq = torch.masked_select(word_pos_1[b,:], stop_mask_1[b,:])
if num_sent == 2:
valid_pos_seq = torch.cat((valid_pos_seq, SEP_indx[b].reshape(1), (SEP_indx[b]+1).reshape(1))) #add two SEP token back to differentiate two sentences
valid_pos_seq_2 = torch.masked_select(word_pos_2[b,:], stop_mask_2[b,:])[1:] + SEP_indx[b] + 1
valid_pos_seq = torch.cat((valid_pos_seq, valid_pos_seq_2))
try:
assert valid_pos_seq.max() < (torch.nan_to_num(word_ids_sn[b])).max()
except:
import ipdb; ipdb.set_trace()
#remove CLS token
valid_pos_seq = valid_pos_seq[1:]
#convert word pos sequence to token pos sequence
cur_token_pos = torch.tensor([0.0], dtype=torch.float64).to(word_pos.device) # fake CLS token for tensor concatenation
for p in valid_pos_seq:
idx = torch.where(word_ids_sn[b]==p)[0]
for i in idx:
cur_token_pos = torch.cat((cur_token_pos, (p + word_ids_2_token_ids_sn[b][i]).reshape(1)))
gaze_token_pos.append(cur_token_pos[1:]) # remove the fake CLS token
sp_len = [pos.shape[0] for pos in gaze_token_pos]
sp_len = torch.FloatTensor(sp_len).to(word_pos.device)
#for zero length scanpath, add additional CLS token to avoid error in pack_padded_sequence operation
for indx in torch.where(sp_len==0)[0]:
gaze_token_pos[indx] = torch.cat((torch.zeros(1, dtype=torch.float64).to(word_pos.device), gaze_token_pos[indx]))
sp_len[indx] = 1
# padding. pad first seq to desired length, padding value: 511, last token index that can be retrive from BERT feature layer
#gaze_token_pos[0] = nn.ConstantPad1d((0, 512 - gaze_token_pos[0].shape[0]), 511)(gaze_token_pos[0])
#padding to the longest sequence, padding value: data_args.max_seq_length - 1, last token index that can be retrive from BERT feature layer
set_max_seq_length = word_ids_sn.shape[1]
gaze_token_pos = pad_sequence(gaze_token_pos, batch_first=True, padding_value=set_max_seq_length-1)
return gaze_token_pos, sp_len
def SP_Gen(self, input_ids, attention_mask, token_type_ids, word_ids, word_len, LM_word_ids):
batch_size = input_ids.size(0)
# Number of sentences in one instance
# 2: pair instance;
num_sent = input_ids.size(1)
# Flatten input for encoding
input_ids = input_ids.view((-1, input_ids.size(-1))) # (bs * num_sent, len)
attention_mask = attention_mask.view((-1, attention_mask.size(-1))) # (bs * num_sent, len)
if token_type_ids is not None:
token_type_ids = token_type_ids.view((-1, token_type_ids.size(-1))) # (bs * num_sent, len)
word_ids = word_ids.view((-1, word_ids.size(-1))) # (bs * num_sent, len)
word_len = word_len.view((-1, word_len.size(-1))) # (bs * num_sent, len)
gaze_pos, sn_len = self.sp_gen_model(sn_emd = input_ids,
sn_mask = attention_mask,
word_ids_sn = word_ids,
sn_word_len = word_len,
le = self.sp_gen_model.le)
gaze_pos = gaze_pos.view((batch_size, num_sent, gaze_pos.size(-1))) # (bs, num_sent, hidden)
sn_len = sn_len.view((batch_size, num_sent)) # (bs, num_sent)
gaze_token_pos, sp_len = self.convert_word_pos_seq_to_token_pos_seq(word_pos=gaze_pos,
sn_len=sn_len,
word_ids_sn=LM_word_ids)
return gaze_token_pos, sp_len
def forward(self, sp_pooler_output, input_ids, attention_mask, token_type_ids, word_ids, word_len, LM_word_ids):
gaze_token_pos, sp_len = self.SP_Gen(input_ids, attention_mask, token_type_ids, word_ids, word_len, LM_word_ids)
#retrieve features according to scanpath ordering,
#Note: gather can’t differentiate the index->gaze_token_pos variable
#x_sp = torch.gather(sp_pooler_output, 1, gaze_token_pos.unsqueeze(2).repeat(1,1,768).to(torch.int64))
#instead
#make own one-hot encoding so that it is differentiable during training
token_ids_sn = torch.arange(sp_pooler_output.shape[1])[None, None, :].expand(gaze_token_pos.shape[0], gaze_token_pos.shape[1], -1).to(gaze_token_pos.device)
one_hot = token_ids_sn - gaze_token_pos.unsqueeze(-1)
one_hot[one_hot!=0] = 1
one_hot = 1 - one_hot
x_sp = torch.einsum('bij,bki->bkj', sp_pooler_output, one_hot.float())
x_sp = self.dropout(x_sp)
x_sp_packed = pack_padded_sequence(x_sp, sp_len.cpu(), batch_first=True, enforce_sorted=False)
x_sp_packed, last_hidden = self.gru(x_sp_packed, sp_pooler_output[:,0,:].unsqueeze(0).contiguous())
return last_hidden[0,:]
def orig_forward(orig_self,
encoder,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else orig_self.config.use_return_dict
batch_size = input_ids.size(0)
# Get raw embeddings
outputs = encoder(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=True,
)
sequence_output = outputs.last_hidden_state
logits = orig_self.classifier(sequence_output)
loss = None
if labels is not None:
if orig_self.num_labels == 1:
# We are doing regression
loss_fct = nn.MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, orig_self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
if loss is not None:
return SequenceClassifierOutput(
loss=loss,
logits=logits,
#hidden_states=outputs.hidden_states,
#attentions=outputs.attentions,
)
else:
return SequenceClassifierOutput(
#loss=loss,
logits=logits,
#hidden_states=outputs.hidden_states,
#attentions=outputs.attentions,
)
def aug_forward(orig_self,
encoder,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
word_ids=None,
ET_input_ids=None,
ET_attention_mask=None,
ET_token_type_ids=None,
ET_position_ids=None,
ET_word_ids=None,
ET_word_len=None,
):
return_dict = return_dict if return_dict is not None else orig_self.config.use_return_dict
batch_size = input_ids.size(0)
# Get raw embeddings
outputs = encoder(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=True,
) #last_hidden_state, hidden_states
#compute L_standard
sequence_output = outputs.last_hidden_state
logits = orig_self.classifier(sequence_output)
##compute L_scanpath
sp_sequence_output = orig_self.sp_encoder(
sp_pooler_output=sequence_output,
input_ids=ET_input_ids,
attention_mask=ET_attention_mask,
token_type_ids=None,
word_ids=ET_word_ids,
word_len=ET_word_len,
LM_word_ids=word_ids,
)
sp_logits = orig_self.classifier(sp_sequence_output.unsqueeze(1))
if labels is not None:
if orig_self.num_labels == 1:
# We are doing regression
loss_fct = nn.MSELoss()
loss_text = loss_fct(logits.view(-1), labels.view(-1))
loss = loss_text + loss_fct(sp_logits.view(-1), labels.view(-1)) * orig_self.model_args.augweight
else:
loss_fct = nn.CrossEntropyLoss()
loss_text = loss_fct(logits.view(-1, orig_self.num_labels), labels.view(-1))
loss = loss_text + loss_fct(sp_logits.view(-1, orig_self.num_labels), labels.view(-1)) * orig_self.model_args.augweight
logits = torch.cat((logits, sp_logits), dim=0)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
#hidden_states=outputs.hidden_states,
#attentions=outputs.attentions,
)
class Gazesup_RobertaForSequenceClassification(RobertaPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config, *model_args, **model_kargs):
super().__init__(config)
self.num_labels = config.num_labels
self.model_args = model_kargs["model_args"]
self.roberta = RobertaModel(config, add_pooling_layer=False)
self.classifier = RobertaClassificationHead(config)
self.init_weights()
def add_sp_func(self, config):
#for integrating the scanpath module
self.sp_encoder = SP_Encoder(config)
def forward(self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
add_gaze=False,
word_ids=None,
ET_input_ids=None,
ET_attention_mask=None,
ET_token_type_ids=None,
ET_position_ids=None,
ET_word_ids=None,
ET_word_len=None,
):
if self.training:
#add gaze module
add_gaze=True
if add_gaze:
return aug_forward(self, self.roberta,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
labels=labels,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
word_ids=word_ids,
ET_input_ids=ET_input_ids,
ET_attention_mask=ET_attention_mask,
ET_token_type_ids=ET_token_type_ids,
ET_position_ids=ET_position_ids,
ET_word_ids=ET_word_ids,
ET_word_len=ET_word_len,
)
else:
return orig_forward(self, self.roberta,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
labels=labels,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class Eyettention(nn.Module):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super(Eyettention, self).__init__()
self.model_pretrained = config._name_or_path
self.used_sn_len = 24
self.window_width = 1
self.hidden_size = 128
#Encode the label into interger categories, setting the exclusive category 'cf["max_sn_len"]-1' as the end sign
self.le = LabelEncoder()
self.le.fit(np.append(np.arange(-self.used_sn_len+3, self.used_sn_len-1), self.used_sn_len-1))
#le.classes_
encoder_config = AutoConfig.from_pretrained(self.model_pretrained)
encoder_config.output_hidden_states=True
# initiate Bert with pre-trained weights
print("keeping Bert with pre-trained weights")
if 'RoBERTa' in self.model_pretrained:
self.bert = RobertaModel.from_pretrained(self.model_pretrained, config = encoder_config, add_pooling_layer = False)
elif 'bert' in self.model_pretrained:
self.bert = BertModel.from_pretrained(self.model_pretrained, config = encoder_config, add_pooling_layer = False)
self.bert.eval()
#freeze the parameters in Bert model
for param in self.bert.parameters():
param.requires_grad = False
self.embedding_dropout = nn.Dropout(0.4)
self.encoder_lstm1 = nn.LSTM(input_size = 768, hidden_size = int(self.hidden_size/2), num_layers = 1, batch_first=True, bidirectional=True)
self.encoder_lstm2 = nn.LSTM(input_size = int(self.hidden_size), hidden_size = int(self.hidden_size/2), num_layers = 1, batch_first=True, bidirectional=True)
self.encoder_lstm3 = nn.LSTM(input_size = int(self.hidden_size), hidden_size = int(self.hidden_size/2), num_layers = 1, batch_first=True, bidirectional=True)
self.encoder_lstm4 = nn.LSTM(input_size = int(self.hidden_size), hidden_size = int(self.hidden_size/2), num_layers = 1, batch_first=True, bidirectional=True)
self.encoder_lstm5 = nn.LSTM(input_size = int(self.hidden_size), hidden_size = int(self.hidden_size/2), num_layers = 1, batch_first=True, bidirectional=True)
self.encoder_lstm6 = nn.LSTM(input_size = int(self.hidden_size), hidden_size = int(self.hidden_size/2), num_layers = 1, batch_first=True, bidirectional=True)
self.encoder_lstm7 = nn.LSTM(input_size = int(self.hidden_size), hidden_size = int(self.hidden_size/2), num_layers = 1, batch_first=True, bidirectional=True)
self.encoder_lstm8 = nn.LSTM(input_size = int(self.hidden_size), hidden_size = int(self.hidden_size/2), num_layers = 1, batch_first=True, bidirectional=True)
#decoder
self.position_embeddings = nn.Embedding(encoder_config.max_position_embeddings, encoder_config.hidden_size)
self.LayerNorm = nn.LayerNorm(encoder_config.hidden_size, eps=encoder_config.layer_norm_eps)
self.attn_position = nn.Linear(self.hidden_size, self.hidden_size+1) #acoount for the word length feature
#initialize eight decoder cells
self.decoder_cell1 = nn.LSTMCell(768, self.hidden_size)
self.decoder_cell2 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell3 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell4 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell5 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell6 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell7 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell8 = nn.LSTMCell(self.hidden_size, self.hidden_size)
#fixation postion decoder
self.decoder_dense1 = nn.Linear(self.hidden_size*2+1, 512)
self.decoder_dense2 = nn.Linear(512, 256)
self.decoder_dense3 = nn.Linear(256, 256)
self.decoder_dense4 = nn.Linear(256, 256)
#initialize last dense layer
self.decoder_dense5 = nn.Linear(256, self.used_sn_len*2-3)
self.dropout_LSTM = nn.Dropout(0.2)
self.dropout_dense = nn.Dropout(0.2)
#for scanpath generation
self.softmax = nn.Softmax(dim=1)
def pool_subwords_to_word(self, subword_emb, word_ids_sn, target, pool_method='sum'):
#try batching computing
# Pool bert subwords back to word level
merged_word_att = torch.empty(subword_emb.shape[0], 0, 768).to(subword_emb.device)
if target == 'sn':
max_len = subword_emb.size(1)
for word_idx in range(max_len):
word_mask = (word_ids_sn == word_idx).unsqueeze(2).repeat(1, 1, 768)
#pooling method -> sum
if pool_method=='sum':
pooled_word_emb = torch.sum(subword_emb * word_mask, 1).unsqueeze(1) #[batch, 1, 768]
elif pool_method=='mean':
pooled_word_emb = torch.mean(subword_emb * word_mask, 1).unsqueeze(1) #[batch, 1, 768]
merged_word_att = torch.cat([merged_word_att, pooled_word_emb], dim=1)
mask_word = torch.sum(merged_word_att, 2).bool()
return merged_word_att, mask_word
def encode(self, sn_emd, sn_mask, word_ids_sn, sn_word_len):
outputs = self.bert(input_ids=sn_emd, attention_mask=sn_mask)
hidden_rep_orig, pooled_rep = outputs[0], outputs[1]
# Pool bert subwords back to word level for english corpus
merged_word_att, sn_mask_word = self.pool_subwords_to_word(hidden_rep_orig,
word_ids_sn,
target='sn',
pool_method='sum')
hidden_rep = self.embedding_dropout(merged_word_att)
#eight LSTM layers for encoder
x, (hn, hc) = self.encoder_lstm1(hidden_rep, None)
x, (hn, hc) = self.encoder_lstm2(self.dropout_LSTM(x), None)
residual = x
x, (hn, hc) = self.encoder_lstm3(self.dropout_LSTM(x), None)
x = x + residual
residual = x
x, (hn, hc) = self.encoder_lstm4(self.dropout_LSTM(x), None)
x = x + residual
residual = x
x, (hn, hc) = self.encoder_lstm5(self.dropout_LSTM(x), None)
x = x + residual
residual = x
x, (hn, hc) = self.encoder_lstm6(self.dropout_LSTM(x), None)
x = x + residual
residual = x
x, (hn, hc) = self.encoder_lstm7(self.dropout_LSTM(x), None)
x = x + residual
residual = x
x, (hn, hc) = self.encoder_lstm8(self.dropout_LSTM(x), None)
x = x + residual
#concatenate with the word length feature
x = torch.cat((x, sn_word_len[:, :, None].half()), dim=2)
return x, sn_mask_word
def location_prediction(self, sp_enc_out, word_enc_out, sp_pos, sn_mask, timestep):
#predict fixation location
# General Attention:
# score(ht,hs) = (ht^T)(Wa)hs
# hs is the output from encoder
# ht is the previous hidden state from decoder
# self.attn(o): [batch, step, units]
attn_prod = torch.matmul(self.attn_position(sp_enc_out.unsqueeze(1)), word_enc_out.permute(0,2,1)) # [batch, 1, step]
#local attention
aligned_position = sp_pos[:, timestep]
max_sn_len = word_enc_out.size(1)
# Get window borders
left = torch.where(aligned_position - self.window_width >= 0, (aligned_position - self.window_width), torch.tensor(0, dtype=torch.float).to(sn_mask.device))
right = torch.where(aligned_position + self.window_width <= max_sn_len-1, aligned_position + self.window_width, torch.tensor(max_sn_len-1, dtype=torch.float).to(sn_mask.device))
#exclude padding tokens
#only consider words in the window
sen_seq = torch.arange(max_sn_len)[None,:].expand(sn_mask.shape[0],max_sn_len).to(sn_mask.device)
outside_win_mask = (sen_seq < left.unsqueeze(1)) + (sen_seq > right.unsqueeze(1))
attn_prod += (~sn_mask + outside_win_mask).unsqueeze(1) * -1e9
att_weight = softmax(attn_prod, dim=2) # [batch, 1, step]
#atten_weights_batch = torch.cat([atten_weights_batch, att_weight], dim=1)
context = torch.matmul(att_weight, word_enc_out) # [batch, 1, units]
hc = torch.cat([context.squeeze(1),sp_enc_out],dim=1) # [batch, units *2]
hc = self.dropout_dense(hc)
hc = F.relu(self.decoder_dense1(hc))
hc = self.dropout_dense(hc)
hc = F.relu(self.decoder_dense2(hc))
hc = self.dropout_dense(hc)
hc = F.relu(self.decoder_dense3(hc))
hc = self.dropout_dense(hc)
hc = F.relu(self.decoder_dense4(hc))
result = self.decoder_dense5(hc) # [batch, dec_o_dim]
return result
def decode(self, sn_mask, word_enc_out, sn_emd, word_ids_sn, le):
sn_len = (torch.sum(sn_mask, axis=1)-2).float()
# Initialize hidden state and cell state with zeros,
hn = torch.zeros(8, sn_mask.shape[0], self.hidden_size).to(sn_mask.device)
hc = torch.zeros(8, sn_mask.shape[0], self.hidden_size).to(sn_mask.device)
hx, cx = hn[0,:,:], hc[0,:,:]
hx2, cx2 = hn[1,:,:], hc[1,:,:]
hx3, cx3 = hn[2,:,:], hc[2,:,:]
hx4, cx4 = hn[3,:,:], hc[3,:,:]
hx5, cx5 = hn[4,:,:], hc[4,:,:]
hx6, cx6 = hn[5,:,:], hc[5,:,:]
hx7, cx7 = hn[6,:,:], hc[6,:,:]
hx8, cx8 = hn[7,:,:], hc[7,:,:]
#use CLS token (0) as start token
dec_in_start = (torch.zeros(sn_mask.shape[0])).long().to(sn_mask.device)
dec_emb_in = self.bert.embeddings.word_embeddings(dec_in_start) # [batch, emb_dim]
#add positional embeddings
start_pos = torch.zeros(sn_mask.shape[0]).to(sn_mask.device)
position_embeddings = self.position_embeddings(start_pos.long())
dec_emb_in = dec_emb_in+position_embeddings
dec_emb_in = self.LayerNorm(dec_emb_in)
dec_in = self.embedding_dropout(dec_emb_in)
#generate fixation one by one in an autoregressive way
output_pos = torch.empty(sn_mask.shape[0], 0, requires_grad=True).to(sn_mask.device)
pred_counter = 0
output_pos = torch.cat([output_pos, start_pos.unsqueeze(1)], dim=1)
for p in range(sn_mask.size(-1)-1):
hx, cx = self.decoder_cell1(dec_in, (hx, cx)) # [batch, units]
hx2, cx2 = self.decoder_cell2(self.dropout_LSTM(hx), (hx2, cx2))
residual = hx2
hx3, cx3 = self.decoder_cell3(self.dropout_LSTM(hx2), (hx3, cx3))
input3 = hx3 + residual
residual = input3
hx4, cx4 = self.decoder_cell4(self.dropout_LSTM(input3), (hx4, cx4))
input4 = hx4 + residual
residual = input4
hx5, cx5 = self.decoder_cell5(self.dropout_LSTM(input4), (hx5, cx5))
input5 = hx5 + residual
residual = input5
hx6, cx6 = self.decoder_cell6(self.dropout_LSTM(input5), (hx6, cx6))
input6 = hx6 + residual
residual = input6
hx7, cx7 = self.decoder_cell7(self.dropout_LSTM(input6), (hx7, cx7))
input7 = hx7 + residual
residual = input7
hx8, cx8 = self.decoder_cell8(self.dropout_LSTM(input7), (hx8, cx8))
input8 = hx8 + residual
#location prediction
pred_loc_logits = self.location_prediction(input8, word_enc_out, output_pos, sn_mask, p)
if self.training:
#Sample hard categorical using "Straight-through" trick:
sampled_pred_loc = F.gumbel_softmax(pred_loc_logits, tau=0.5, hard=True)
else:
#sampling next fixation location according to the distribution
sampled_pred_loc = torch.multinomial(self.softmax(pred_loc_logits), 1).squeeze()
#sampled_pred_loc = pred_loc_logits.argmax(1)
sampled_pred_loc = F.one_hot(sampled_pred_loc, num_classes=le.classes_.shape[0])
#print(sampled_pred_loc.grad_fn)
sac_length_class = torch.tensor(le.classes_).to(sn_mask.device).repeat(sn_mask.shape[0],1)
sampled_sac_length = (sac_length_class * sampled_pred_loc).sum(1)
#add saccade length -> predicted fixation word index
pred_word_index = (output_pos[:, -1] + sampled_sac_length)
#check the output word index for validity
#when the prediction is end-of-sentence (23) -- set to sentence length+1, i.e. token <'SEP'>
pred_word_index[sampled_sac_length == 23] = sn_len[sampled_sac_length == 23]+1
#when the predicted fixation word index larger than sentence max length -- set to sentence length+1, i.e. token <'SEP'>
pred_word_index[pred_word_index > sn_len] = sn_len[pred_word_index > sn_len]+1
#predicted fixation word index smaller than 1 -- set to 1
pred_word_index[pred_word_index < 1] = 1
output_pos = torch.cat([output_pos, pred_word_index.unsqueeze(1)], dim=1)
#prepare next timestamp input token
pred_counter += 1
#use predictions (token ids) as input to the next timestep
input_ids = sn_emd * (word_ids_sn == pred_word_index.unsqueeze(1))
mask_input_ids = ~(input_ids==0).unsqueeze(2).repeat(1,1,768)
#merge tokens
dec_emb_in = torch.sum(self.bert.embeddings.word_embeddings(input_ids) * mask_input_ids, axis=1)
#add positional embeddings
position_embeddings = self.position_embeddings(output_pos[:, -1].long())
dec_emb_in = dec_emb_in+position_embeddings
dec_emb_in = self.LayerNorm(dec_emb_in)
dec_emb_in = self.embedding_dropout(dec_emb_in)
return output_pos, sn_len # [batch, step, dec_o_dim]
def forward(self, sn_emd, sn_mask, word_ids_sn, sn_word_len, le):
x, sn_mask_word = self.encode(sn_emd, sn_mask, word_ids_sn, sn_word_len) # [batch, step, units], [batch, units]
pred_pos, sn_len = self.decode(sn_mask_word, x, sn_emd, word_ids_sn, le) # [batch, step, dec_o_dim]
return pred_pos, sn_len
class Eyettention_pretrain(nn.Module):
def __init__(self, cf):
super(Eyettention_pretrain, self).__init__()
self.cf = cf
self.window_width = 1
self.hidden_size = 128
#BERT encoder
bert_encoder_config = AutoConfig.from_pretrained(self.cf["model_pretrained"])
bert_encoder_config.output_hidden_states=True
# initiate Bert with pre-trained weights
print("keeping Bert with pre-trained weights")
if self.cf["model_pretrained"].startswith('RoBERTa'):
self.bert = RobertaModel.from_pretrained(self.cf["model_pretrained"], config = bert_encoder_config, add_pooling_layer = False)
if self.cf["model_pretrained"].startswith('bert'):
self.bert = BertModel.from_pretrained(self.cf["model_pretrained"], config = bert_encoder_config, add_pooling_layer = False)
self.bert.eval()
#freeze the parameters in Bert model
for param in self.bert.parameters():
param.requires_grad = False
#text encoder
self.embedding_dropout = nn.Dropout(0.4)
self.encoder_lstm1 = nn.LSTM(input_size = 768, hidden_size = int(self.hidden_size/2), num_layers = 1, batch_first=True, bidirectional=True)
self.encoder_lstm2 = nn.LSTM(input_size = int(self.hidden_size), hidden_size = int(self.hidden_size/2), num_layers = 1, batch_first=True, bidirectional=True)
self.encoder_lstm3 = nn.LSTM(input_size = int(self.hidden_size), hidden_size = int(self.hidden_size/2), num_layers = 1, batch_first=True, bidirectional=True)
self.encoder_lstm4 = nn.LSTM(input_size = int(self.hidden_size), hidden_size = int(self.hidden_size/2), num_layers = 1, batch_first=True, bidirectional=True)
self.encoder_lstm5 = nn.LSTM(input_size = int(self.hidden_size), hidden_size = int(self.hidden_size/2), num_layers = 1, batch_first=True, bidirectional=True)
self.encoder_lstm6 = nn.LSTM(input_size = int(self.hidden_size), hidden_size = int(self.hidden_size/2), num_layers = 1, batch_first=True, bidirectional=True)
self.encoder_lstm7 = nn.LSTM(input_size = int(self.hidden_size), hidden_size = int(self.hidden_size/2), num_layers = 1, batch_first=True, bidirectional=True)
self.encoder_lstm8 = nn.LSTM(input_size = int(self.hidden_size), hidden_size = int(self.hidden_size/2), num_layers = 1, batch_first=True, bidirectional=True)
#for gaze prediction
self.position_embeddings = nn.Embedding(bert_encoder_config.max_position_embeddings, bert_encoder_config.hidden_size)
self.LayerNorm = nn.LayerNorm(bert_encoder_config.hidden_size, eps=bert_encoder_config.layer_norm_eps)
self.attn_position = nn.Linear(self.hidden_size, self.hidden_size+1) #acoount for the word length feature
#initialize eight decoder cells
self.decoder_cell1 = nn.LSTMCell(768, self.hidden_size)
self.decoder_cell2 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell3 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell4 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell5 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell6 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell7 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell8 = nn.LSTMCell(self.hidden_size, self.hidden_size)
#fixation postion decoder
self.decoder_dense1 = nn.Linear(self.hidden_size*2+1, 512)
self.decoder_dense2 = nn.Linear(512, 256)
self.decoder_dense3 = nn.Linear(256, 256)
self.decoder_dense4 = nn.Linear(256, 256)
#initialize last dense layer
self.decoder_dense5 = nn.Linear(256, self.cf["max_sn_len"]*2-3)
self.dropout_LSTM = nn.Dropout(0.2)
self.dropout_dense = nn.Dropout(0.2)
def pool_subwords_to_word(self, subword_emb, word_ids_sn, target, pool_method='sum'):
#try batching computing
# Pool bert subwords back to word level
merged_word_att = torch.empty(subword_emb.shape[0], 0, 768).to(subword_emb.device)
if target == 'sn':
max_len = self.cf["max_sn_len"] #CLS and SEP included
elif target == 'sp':
max_len = self.cf["max_sp_len"] - 1 #do not account the 'SEP' token
for word_idx in range(max_len):
word_mask = (word_ids_sn == word_idx).unsqueeze(2).repeat(1, 1, 768)
#pooling method -> sum
if pool_method=='sum':
pooled_word_emb = torch.sum(subword_emb * word_mask, 1).unsqueeze(1) #[batch, 1, 768]
elif pool_method=='mean':
pooled_word_emb = torch.mean(subword_emb * word_mask, 1).unsqueeze(1) #[batch, 1, 768]
merged_word_att = torch.cat([merged_word_att, pooled_word_emb], dim=1)
mask_word = torch.sum(merged_word_att, 2).bool()
return merged_word_att, mask_word
def encode(self, sn_emd, sn_mask, word_ids_sn, sn_word_len):
outputs = self.bert(input_ids=sn_emd, attention_mask=sn_mask)
hidden_rep_orig, pooled_rep = outputs[0], outputs[1]
# Pool bert subwords back to word level for english corpus
merged_word_att, sn_mask_word = self.pool_subwords_to_word(hidden_rep_orig,
word_ids_sn,
target='sn',
pool_method='sum')
hidden_rep = self.embedding_dropout(merged_word_att)
#eight LSTM layers for encoder
x, (hn, hc) = self.encoder_lstm1(hidden_rep, None)
x, (hn, hc) = self.encoder_lstm2(self.dropout_LSTM(x), None)
residual = x
x, (hn, hc) = self.encoder_lstm3(self.dropout_LSTM(x), None)
x = x + residual
residual = x
x, (hn, hc) = self.encoder_lstm4(self.dropout_LSTM(x), None)
x = x + residual
residual = x
x, (hn, hc) = self.encoder_lstm5(self.dropout_LSTM(x), None)
x = x + residual
residual = x
x, (hn, hc) = self.encoder_lstm6(self.dropout_LSTM(x), None)
x = x + residual
residual = x
x, (hn, hc) = self.encoder_lstm7(self.dropout_LSTM(x), None)
x = x + residual
residual = x
x, (hn, hc) = self.encoder_lstm8(self.dropout_LSTM(x), None)
x = x + residual
#concatenate with the word length feature
x = torch.cat((x, sn_word_len[:, :, None]), dim=2)
return x, sn_mask_word
def location_prediction(self, sp_enc_out, word_enc_out, sp_pos, sn_mask, timestep):
#predict fixation location
# General Attention:
# score(ht,hs) = (ht^T)(Wa)hs
# hs is the output from encoder
# ht is the previous hidden state from decoder
# self.attn(o): [batch, step, units]
attn_prod = torch.matmul(self.attn_position(sp_enc_out.unsqueeze(1)), word_enc_out.permute(0,2,1)) # [batch, 1, step]
#local attention
aligned_position = sp_pos[:, timestep]
# Get window borders
left = torch.where(aligned_position - self.window_width >= 0, (aligned_position - self.window_width), 0)
right = torch.where(aligned_position + self.window_width <= self.cf["max_sn_len"]-1, aligned_position + self.window_width, self.cf["max_sn_len"]-1)
#exclude padding tokens
#only consider words in the window
sen_seq = torch.arange(self.cf["max_sn_len"])[None,:].expand(sn_mask.shape[0],self.cf["max_sn_len"]).to(sn_mask.device)
outside_win_mask = (sen_seq < left.unsqueeze(1)) + (sen_seq > right.unsqueeze(1))
attn_prod += (~sn_mask + outside_win_mask).unsqueeze(1) * -1e9
#attn_prod += (torch.Tensor.bool(1-sn_mask_word) + outside_win_mask).unsqueeze(1) * -1e9
att_weight = softmax(attn_prod, dim=2) # [batch, 1, step]
#atten_weights_batch = torch.cat([atten_weights_batch, att_weight], dim=1)
context = torch.matmul(att_weight, word_enc_out) # [batch, 1, units]
hc = torch.cat([context.squeeze(1),sp_enc_out],dim=1) # [batch, units *2]
hc = self.dropout_dense(hc)
hc = F.relu(self.decoder_dense1(hc))
hc = self.dropout_dense(hc)
hc = F.relu(self.decoder_dense2(hc))
hc = self.dropout_dense(hc)
hc = F.relu(self.decoder_dense3(hc))
hc = self.dropout_dense(hc)
hc = F.relu(self.decoder_dense4(hc))
result = self.decoder_dense5(hc) # [batch, dec_o_dim]
return result
def decode(self, sp_emd, sn_mask, sp_pos, word_enc_out, word_ids_sp):
# Initialize hidden state and cell state with zeros,
hn = torch.zeros(8, sp_emd.shape[0], self.hidden_size).to(sp_emd.device)
hc = torch.zeros(8, sp_emd.shape[0], self.hidden_size).to(sp_emd.device)
hx, cx = hn[0,:,:], hc[0,:,:]
hx2, cx2 = hn[1,:,:], hc[1,:,:]
hx3, cx3 = hn[2,:,:], hc[2,:,:]
hx4, cx4 = hn[3,:,:], hc[3,:,:]
hx5, cx5 = hn[4,:,:], hc[4,:,:]
hx6, cx6 = hn[5,:,:], hc[5,:,:]
hx7, cx7 = hn[6,:,:], hc[6,:,:]
hx8, cx8 = hn[7,:,:], hc[7,:,:]
dec_emb_in = self.bert.embeddings.word_embeddings(sp_emd[:, :-1])
# Pool bert subwords back to word level
sp_merged_word_emd, sp_mask_word = self.pool_subwords_to_word(dec_emb_in,
word_ids_sp[:,:-1],
target='sp',
pool_method='sum')
#add positional embeddings
position_embeddings = self.position_embeddings(sp_pos[:, :-1])
dec_emb_in = sp_merged_word_emd+position_embeddings
dec_emb_in = self.LayerNorm(dec_emb_in)
dec_emb_in = dec_emb_in.permute(1,0,2) # [step, n, emb_dim]
dec_emb_in = self.embedding_dropout(dec_emb_in)
#Predict output for each time step of the input features in turn
output_pos = []
for i in range(dec_emb_in.shape[0]):
hx, cx = self.decoder_cell1(dec_emb_in[i], (hx, cx)) # [batch, units]
hx2, cx2 = self.decoder_cell2(self.dropout_LSTM(hx), (hx2, cx2))
residual = hx2
hx3, cx3 = self.decoder_cell3(self.dropout_LSTM(hx2), (hx3, cx3))
input3 = hx3 + residual
residual = input3
hx4, cx4 = self.decoder_cell4(self.dropout_LSTM(input3), (hx4, cx4))
input4 = hx4 + residual
residual = input4
hx5, cx5 = self.decoder_cell5(self.dropout_LSTM(input4), (hx5, cx5))
input5 = hx5 + residual
residual = input5
hx6, cx6 = self.decoder_cell6(self.dropout_LSTM(input5), (hx6, cx6))
input6 = hx6 + residual
residual = input6
hx7, cx7 = self.decoder_cell7(self.dropout_LSTM(input6), (hx7, cx7))
input7 = hx7 + residual
residual = input7
hx8, cx8 = self.decoder_cell8(self.dropout_LSTM(input7), (hx8, cx8))
input8 = hx8 + residual
pred_loc = self.location_prediction(input8, word_enc_out, sp_pos, sn_mask, i)
output_pos.append(pred_loc)
output_pos = torch.stack(output_pos,dim=0) # [step, batch, 1]
return output_pos.permute(1,0,2) # [batch, step, dec_o_dim]
def forward(self, sn_emd, sn_mask, sp_emd, sp_pos, word_ids_sn, word_ids_sp, sn_word_len):
x, sn_mask_word = self.encode(sn_emd, sn_mask, word_ids_sn, sn_word_len) # [batch, step, units], [batch, units]
pred_pos = self.decode(sp_emd, sn_mask_word, sp_pos, x, word_ids_sp) # [batch, step, dec_o_dim]
return pred_pos