-
Notifications
You must be signed in to change notification settings - Fork 12
/
monad_composition.v
394 lines (344 loc) · 11.8 KB
/
monad_composition.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
(* monae: Monadic equational reasoning in Coq *)
(* Copyright (C) 2020 monae authors, license: LGPL-2.1-or-later *)
From mathcomp Require Import all_ssreflect.
From HB Require Import structures.
Require Import preamble hierarchy monad_lib.
(******************************************************************************)
(* Composing monads *)
(* *)
(* formalization of [Jones and Duponcheel, Composing Monads, Yale RR 1993] *)
(* (Sections 2 and 3) *)
(* *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope monae_scope.
Section comp.
Variables (M N : monad).
Definition ret_comp : idfun ~~> M \o N := (@ret M) \h (@ret N).
Lemma naturality_ret : naturality idfun [the functor of M \o N] ret_comp.
Proof. by move=> A B h; rewrite -(natural ((@ret M) \h (@ret N))). Qed.
HB.instance Definition _ := isNatural.Build
idfun [the functor of (M \o N)] ret_comp naturality_ret.
End comp.
Definition CRet (M N : monad) := [the idfun ~> [the functor of M \o N] of ret_comp M N].
Module Prod.
Section prod.
Variables M N(* NB: actually, premonad is enough for N*) : monad.
Variable prod : N \o (M \o N) ~~> M \o N.
Arguments prod {_}.
Definition JOIN : (M \o N) \o (M \o N) ~~> M \o N := fun _ => Join \o M # prod.
Arguments JOIN {_}.
Definition prod1 := forall (A B : UU0) (f : A -> B), prod \o N # ([the functor of M \o N] # f) = [the functor of M \o N] # f \o prod.
Definition prod2 := forall A, prod \o Ret = id :> (_ -> (M \o N) A).
Definition prod3 := forall A, prod \o N # CRet M N _ = Ret :> (_ -> (M \o N) A).
Definition prod4 := forall A, prod \o N # JOIN = JOIN \o prod :> (_ -> (M \o N) A).
Hypothesis Hprod1 : prod1.
Hypothesis Hprod2 : prod2.
Hypothesis Hprod3 : prod3.
Hypothesis Hprod4 : prod4.
Lemma JOIN_naturality : naturality _ _ (@JOIN).
Proof.
move=> A B g; apply/esym; rewrite {1}/JOIN -[in LHS]compA.
transitivity (
Join \o (M # prod \o M # ([the functor of N \o (M \o N)] # g))).
by [].
rewrite -functor_o Hprod1.
rewrite functor_o [LHS]compA /JOIN FCompE -(FCompE M M).
rewrite -(natural join).
by rewrite -compA.
Qed.
HB.instance Definition _ := isNatural.Build
[the functor of (M \o N) \o (M \o N)] [the functor of M \o N] (@JOIN) JOIN_naturality.
Definition JOIN' : [the functor of (M \o N) \o (M \o N)] ~> [the functor of M \o N] :=
[the _ ~> _ of @JOIN].
Lemma JOIN_ret : JoinLaws.left_unit (CRet M N) (@JOIN').
Proof.
move=> A; rewrite /JOIN'.
rewrite /=.
rewrite /CRet.
rewrite compA.
rewrite -(compA Join (M # prod) Ret) (natural ret).
by rewrite [LHS]compA (compA Join) joinretM compidf Hprod2.
Qed.
Lemma JOIN_fmap_ret : JoinLaws.right_unit (@CRet M N) (@JOIN').
Proof.
move=> A.
rewrite /JOIN' /=.
rewrite -compA.
rewrite FCompE.
rewrite -(@functor_o M).
by rewrite Hprod3 joinMret.
Qed.
Lemma JOIN_fmap_JOIN : JoinLaws.associativity (@JOIN').
Proof.
move=> A; rewrite {1 2}/JOIN' -[LHS]compA /=.
rewrite -functor_o.
rewrite Hprod4.
rewrite {1}/JOIN.
rewrite -(compA Join (M # prod) prod).
rewrite functor_o.
rewrite [LHS]compA.
rewrite joinA.
rewrite -compA.
rewrite functor_o.
rewrite (compA Join (M # (M # prod)) (M # prod)).
by rewrite -(natural _).
Qed.
End prod.
End Prod.
Module Dorp.
Section dorp.
Variables M (* actually, premonad is enough for M *) N : monad.
Variable dorp : M \o (N \o M) ~~> M \o N.
Arguments dorp {_}.
Definition JOIN : (M \o N) \o (M \o N) ~~> M \o N := fun _ => M # Join \o dorp.
Arguments JOIN {_}.
Definition dorp1 := forall (A B : UU0) (f : A -> B), dorp \o [the functor of M \o N] # (M # f) = [the functor of M \o N] # f \o dorp.
Definition dorp2 := forall A, (@dorp A) \o CRet M N _ = M # Ret.
Definition dorp3 := forall A, (@dorp A) \o [the functor of M \o N] # Ret = id.
Definition dorp4 := forall A, (@dorp A) \o JOIN = JOIN \o [the functor of M \o N] # dorp.
Hypothesis Hdorp1 : dorp1.
Hypothesis Hdorp2 : dorp2.
Hypothesis Hdorp3 : dorp3.
Hypothesis Hdorp4 : dorp4.
Lemma join_naturality : naturality _ _ (@JOIN).
Proof.
move=> A B g; apply/esym; rewrite {1}/JOIN -compA Hdorp1.
rewrite [LHS]compA.
rewrite (FCompE M N (N # g)).
rewrite -(@functor_o M).
rewrite -natural.
by rewrite functor_o.
Qed.
HB.instance Definition _ := isNatural.Build
[the functor of ((M \o N) \o (M \o N))] [the functor of (M \o N)] (@JOIN) join_naturality.
Definition JOIN' : [the functor of (M \o N) \o (M \o N)] ~> [the functor of M \o N] :=
[the _ ~> _ of (@JOIN)].
Lemma JOIN_ret : JoinLaws.left_unit (@CRet M N) (@JOIN').
Proof.
move=> A; rewrite /JOIN -[LHS]compA Hdorp2.
rewrite -(@functor_o M).
by rewrite joinretM functor_id.
Qed.
Lemma JOIN_fmap_ret : JoinLaws.right_unit (@CRet M N) (@JOIN').
Proof.
move=> A; rewrite /JOIN /CRet.
rewrite -(compA (M # Join) dorp).
rewrite (@functor_o [the functor of M \o N]).
rewrite (compA dorp) Hdorp3.
rewrite compidf -functor_o.
by rewrite joinMret functor_id.
Qed.
Lemma JOIN_fmap_JOIN : JoinLaws.associativity (@JOIN').
Proof.
move=> A; rewrite {1 2}/JOIN'.
rewrite FCompE.
rewrite (@functor_o N).
rewrite -[LHS]compA.
rewrite functor_o.
rewrite (compA dorp).
rewrite Hdorp1.
rewrite -(compA _ dorp).
rewrite (compA (M # Join)) -functor_o.
rewrite joinA.
rewrite functor_o.
rewrite -[LHS]compA.
rewrite (compA (M # Join) dorp).
rewrite -/JOIN.
rewrite -Hdorp4.
by rewrite [LHS]compA.
Qed.
End dorp.
End Dorp.
Module Swap.
Section swap.
Variables M N : monad.
Variable swap : N \o M ~~> M \o N.
Arguments swap {_}.
Definition JOIN : (M \o N) \o (M \o N) ~~> M \o N :=
fun A => M # Join \o Join \o M # (@swap (N A)).
Lemma JOINE A : @JOIN A = Join \o M # (M # Join \o swap).
Proof.
rewrite /JOIN.
rewrite natural.
rewrite -(compA Join) FCompE.
by rewrite -(@functor_o M).
Qed.
Let prod A := M # (join A) \o (@swap _).
Arguments prod {A}.
Let dorp A := Join \o M # (@swap A).
Arguments dorp {A}.
Fact JOIN_prod A : @JOIN A = Join \o M # prod.
Proof. by rewrite JOINE. Qed.
Fact JOIN_dorp A : @JOIN A = M # Join \o dorp.
Proof. by rewrite /dorp. Qed.
Definition swap1 := forall (A B : UU0) (f : A -> B), swap \o N # (M # f) = M # (N # f) \o swap .
Definition swap2 := forall A, @swap A \o Ret = M # Ret :> (M A -> (M \o N) A).
Definition swap3 := forall A, @swap A \o N # Ret = Ret :> (N A -> (M \o N) A).
Definition swap4 := forall A, (@prod A) \o N # (@dorp _) = (@dorp _) \o (@prod _).
Hypothesis Hswap1 : swap1.
Hypothesis Hswap2 : swap2.
Hypothesis Hswap3 : swap3.
Hypothesis Hswap4 : swap4.
Lemma prod1 : Prod.prod1 (@prod).
Proof.
move=> A B f; rewrite {1}/prod.
rewrite -[LHS]compA Hswap1 (compA (M # Join)) -functor_o.
by rewrite -natural functor_o -compA.
Qed.
Lemma prod2 : Prod.prod2 (@prod).
Proof.
by move=> A; rewrite /prod -[LHS]compA Hswap2 -(@functor_o M) joinretM functor_id.
Qed.
Lemma prod3 : Prod.prod3 (@prod).
Proof.
move=> A; rewrite /prod /CRet.
rewrite (@functor_o N) (compA (M # Join \o swap)) -(compA (_ # Join)) Hswap3.
by rewrite (natural ret) -[LHS]compA joinMret compfid.
Qed.
Lemma prod4 : Prod.prod4 (@prod).
Proof.
move=> A; rewrite {1}/Prod.JOIN -JOIN_prod JOIN_dorp {1}/prod (@functor_o N).
rewrite (compA (M # Join \o swap)) -(compA (_ # Join)) Hswap1.
rewrite (compA (M # Join)) -functor_o joinA functor_o.
rewrite -[LHS]compA -(compA (_ # Join)) (compA (M # Join) swap) -/prod Hswap4.
by rewrite [LHS]compA /Prod.JOIN -JOIN_prod JOIN_dorp.
Qed.
Lemma dorp1 : Dorp.dorp1 (@dorp).
Proof.
move=> A B g; rewrite {1}/dorp -[LHS]compA.
rewrite -(@functor_o M).
by rewrite Hswap1 functor_o (compA Join) -natural -[LHS]compA.
Qed.
Lemma dorp2 : Dorp.dorp2 (@dorp).
Proof.
move=> A; rewrite /dorp /CRet (compA (Join \o M # swap)) -(compA Join).
by rewrite (natural ret) (compA Join) joinretM compidf Hswap2.
Qed.
Lemma dorp3 : Dorp.dorp3 (@dorp).
Proof.
move=> A; rewrite /dorp -[LHS]compA.
by rewrite -(@functor_o M) Hswap3 joinMret.
Qed.
Lemma dorp4 : Dorp.dorp4 (@dorp).
Proof.
move=> A; rewrite {1}/dorp {1}/Dorp.JOIN -JOIN_dorp JOIN_prod.
rewrite (compA (Join \o M # swap)) -(compA Join).
rewrite (natural join).
rewrite (compA Join Join) -joinA.
rewrite -2![LHS]compA FCompE.
rewrite -(@functor_o M) -(@functor_o M).
rewrite (compA Join (M # swap) prod) -/dorp -Hswap4 functor_o.
by rewrite [LHS]compA -JOINE JOIN_dorp.
Qed.
Lemma JOIN_naturality : @naturality _ _ (JOIN).
Proof. by move=> ?? g; rewrite JOINE -/prod (Prod.JOIN_naturality prod1 g) JOINE. Qed.
HB.instance Definition _ := isNatural.Build
[the functor of ((M \o N) \o (M \o N))] [the functor of (M \o N)] (@JOIN) JOIN_naturality.
Definition JOIN' : [the functor of (M \o N) \o (M \o N)] ~> [the functor of M \o N] :=
[the _ ~> _ of (@JOIN)].
Lemma JOIN_ret : JoinLaws.left_unit (@CRet M N) (@JOIN').
Proof.
move=> A.
rewrite [JOIN' _]/=.
rewrite JOINE -/prod.
by rewrite (Prod.JOIN_ret prod1 prod2).
Qed.
Lemma JOIN_fmap_ret : JoinLaws.right_unit (@CRet M N) (@JOIN').
Proof.
move=> A.
rewrite [JOIN' _]/=.
by rewrite JOINE -/prod (Prod.JOIN_fmap_ret prod1 prod3).
Qed.
Lemma JOIN_fmap_JOIN : JoinLaws.associativity (@JOIN').
Proof.
move=> A.
rewrite [JOIN' _]/=.
rewrite [X in _ = _ \o X]/=.
by rewrite !JOINE -!/prod (Prod.JOIN_fmap_JOIN prod1 prod4).
Qed.
End swap.
End Swap.
(* wip *)
Section nattrans_cast_lemmas.
Variables (F G : functor).
Lemma IV : [the functor of idfun \o G] ~> F -> G ~> F.
Proof.
move=> [s [] [GFs]].
apply: (@Nattrans.Pack [the functor of G] F _ (Nattrans.Class (isNatural.Axioms_ _ _ _))).
exact: GFs.
Qed.
Lemma VI : [the functor of G \o idfun] ~> F -> G ~> F.
Proof.
move=> [s [] [GFs]].
apply: (@Nattrans.Pack [the functor of G] F _ (Nattrans.Class (isNatural.Axioms_ _ _ _))).
exact: GFs.
Qed.
Variable K J : functor.
Lemma AV : [the functor of G \o K \o J] ~> F -> [the functor of G \o (K \o J)] ~> F.
Proof.
move=> [s [] [GFs]].
apply: (@Nattrans.Pack [the functor of (G \o (K \o J))] F _
(Nattrans.Class (isNatural.Axioms_ _ _ _))).
exact: GFs.
Qed.
Lemma AV' : [the functor of G \o (K \o J)] ~> F -> [the functor of G \o K \o J] ~> F.
Proof.
move=> [s [] [GFs]].
apply: (@Nattrans.Pack [the functor of (G \o K \o J)] F _
(Nattrans.Class (isNatural.Axioms_ _ _ _))).
exact: GFs.
Qed.
Lemma VA : F ~> [the functor of G \o K \o J] -> F ~> [the functor of G \o (K \o J)].
Proof.
move=> [s [] [GFs]].
apply: (@Nattrans.Pack F [the functor of (G \o (K \o J))] _
(Nattrans.Class (isNatural.Axioms_ _ _ _))).
exact: GFs.
Qed.
Lemma VA' : F ~> [the functor of G \o (K \o J)] -> F ~> [the functor of G \o K \o J].
Proof.
move=> [s [] [GFs]].
apply: (@Nattrans.Pack F [the functor of (G \o K) \o J] _
(Nattrans.Class (isNatural.Axioms_ _ _ _))).
exact: GFs.
Qed.
End nattrans_cast_lemmas.
Module DistributiveLaw.
Section distributivelaw.
Variables S T : monad.
Record t := mk {
f : [the functor of S \o T] ~> [the functor of T \o S] ;
unit1 :
IV (f \v (@ret S \h NId T)) = VI (NId T \h @ret S) ;
unit2 :
VI (f \v (NId S \h @ret T)) = IV (@ret T \h NId S) ;
multiplication1 :
AV (f \v (@join S \h NId T)) =
(NId T \h @join S) \v VA ((f \h NId S) \v VA' (NId S \h f)) ;
multiplication2 :
AV' (f \v (NId S \h @join T)) =
(@join T \h NId S) \v VA' ((NId T \h f) \v VA (f \h NId T))
}.
End distributivelaw.
End DistributiveLaw.
Coercion DistributiveLaw.f : DistributiveLaw.t >-> nattrans.
(* TODO *)
Definition beck (S T : monad) (f : DistributiveLaw.t S T) : monad.
have @join : [the functor of (T \o S) \o (T \o S)] ~> [the functor of T \o S].
apply: (VComp ((@join T) \h (@join S)) _).
apply: VA.
apply: AV.
apply: HComp.
exact: NId.
apply: VA'.
apply: AV'.
apply: HComp.
exact: f.
exact: NId.
apply: (Monad.Pack (Monad.Class (isMonad.Axioms_ (CRet T S) join _ _ _ _ _))).
move=> A.
rewrite /join.
Abort.