diff --git a/html/algoritmi.html b/html/algoritmi.html index 1c8b7bb..56d0c81 100644 --- a/html/algoritmi.html +++ b/html/algoritmi.html @@ -285,9 +285,9 @@

  • r_n \mid d
  • @@ -549,9 +549,9 @@

    I_n
  • allora I_n = A \cdot B = (A \cdot B^1, \ldots, A \cdot B^n) = (\mathscr{L}_A(B^1), \ldots, \mathscr{L}_A(B^n)) -\iff \left \{ \begin{array}{c} \mathscr{L}_A(B^1) = e_1 \\ \vdots \\ -\mathscr{L}_A(B^n) = e_n \end{array} \right.\iff e_1, \ldots, e_n \in -\textrm{im}(\mathscr{L}_A) \implies \textrm{span}(e_1, \ldots, e_n) +\iff \left \{ \begin{array}{c} \mathscr{L}_A(B^1) = e_1 \\ \vdots +\\ \mathscr{L}_A(B^n) = e_n \end{array} \right.\iff e_1, \ldots, e_n +\in \textrm{im}(\mathscr{L}_A) \implies \textrm{span}(e_1, \ldots, e_n) \subseteq \textrm{im}(\mathscr{L}_A)
  • e_1, \ldots, e_n base canonica di \mathbb{K}^n \implies \dim(\textrm{span}(e_1, @@ -889,8 +889,8 @@

    I_n})
  • allora, per il teorema del rango \textrm{rk}(\mathscr{L}_{A - \lambda \cdot I_n}) = n -- \dim(\ker(\mathscr{L}_{A - \lambda \cdot I_n})) \iff -\dim(\ker(\mathscr{L}_{A - \lambda \cdot I_n})) = n - +- \dim(\ker(\mathscr{L}_{A - \lambda \cdot I_n})) +\iff \dim(\ker(\mathscr{L}_{A - \lambda \cdot I_n})) = n - \textrm{rk}(\mathscr{L}_{A - \lambda \cdot I_n}) = \dim(\textrm{E}_\lambda(A)) =: \nu(\lambda)
  • diff --git a/html/everything.html b/html/everything.html index ea6a2f4..360077b 100644 --- a/html/everything.html +++ b/html/everything.html @@ -984,7 +984,7 @@

  • Th
  • @@ -997,7 +997,7 @@

    Teorema 43

    @@ -1993,7 +1993,7 @@

  • \textrm{sgn}(\sigma) := (-1)^{|\textrm{Inv}(\sigma)|} =\left\{\begin{array}{ll}+1 & -|\operatorname{Inv}(\sigma)| \equiv 0 \ (\bmod \ 2) \\ -1 & +|\operatorname{Inv}(\sigma)| \equiv 0 \ (\bmod \ 2) \\ -1 & |\operatorname{Inv}(\sigma)| \equiv 1 \ (\bmod \ 2)\end{array}\right.
  • Th
  • @@ -4711,7 +4711,7 @@

  • V(b_0, \ldots, b_n) := \left ( \begin{array}{cccc} b_0^0 & b_0^1 & \cdots & b_0^n \\ b_1^0 & b_1^1 & \cdots & b_1^n \\ \vdots & \ddots & & -\vdots \\\vdots & &\ddots & \vdots \\ b_n^0 & b_n^1 +\vdots \\\vdots & &\ddots & \vdots \\ b_n^0 & b_n^1 & \cdots & b_n^n\end{array}\right) è detta matrice di Vandermonde a coefficienti b_0, \ldots, b_n
  • @@ -4748,7 +4748,7 @@

    \rightarrow W:(v_1, \ldots, v_n) \rightarrow w
  • f è detta multilineare \iff \forall i -\in [1, n], v_1 , \ldots, v_n \in V_1 \times \ldots \times V_n, v_i, +\in [1, n], v_1 , \ldots, v_n \in V_1 \times \ldots \times V_n, v_i, v_i' \in V_i, \lambda, \mu \in \mathbb{K} \quad f(v_1, \ldots, \lambda v_i+\mu v_i', \ldots, v_n) = \lambda f(v_1, \ldots, v_i, \ldots, v_n) + \mu f(v_1, \ldots, v_i', \ldots, v_n) @@ -5532,7 +5532,7 @@

  • Th
  • @@ -5793,7 +5793,7 @@

  • Alg