-
Notifications
You must be signed in to change notification settings - Fork 18
/
gcnmain.py
310 lines (271 loc) · 14.8 KB
/
gcnmain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#!/usr/bin/env python
"""A simple python script template.
"""
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
import os
import sys
import argparse
import pickle
import pdb
import copy
#from mlpconv import MLPCONV
#from mlp import MLP
import logging
import json
import numpy as np
from haversine import haversine
import gzip
import codecs
from collections import OrderedDict, defaultdict
import json
import re
import networkx as nx
import scipy as sp
from data import DataLoader, dump_obj, load_obj
import random
#import tensorflow as tf
import argparse
import sys
from collections import Counter
from gcnmodel import GraphConv
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO)
logging.info('In order to work for big datasets fix https://github.com/Theano/Theano/pull/5721 should be applied to theano.')
np.random.seed(77)
model_args = None
def geo_eval(y_true, y_pred, U_eval, classLatMedian, classLonMedian, userLocation):
assert len(y_pred) == len(U_eval), "#preds: %d, #users: %d" %(len(y_pred), len(U_eval))
distances = []
latlon_pred = []
latlon_true = []
for i in range(0, len(y_pred)):
user = U_eval[i]
location = userLocation[user].split(',')
lat, lon = float(location[0]), float(location[1])
latlon_true.append([lat, lon])
prediction = str(y_pred[i])
lat_pred, lon_pred = classLatMedian[prediction], classLonMedian[prediction]
latlon_pred.append([lat_pred, lon_pred])
distance = haversine((lat, lon), (lat_pred, lon_pred))
distances.append(distance)
acc_at_161 = 100 * len([d for d in distances if d < 161]) / float(len(distances))
logging.info( "Mean: " + str(int(np.mean(distances))) + " Median: " + str(int(np.median(distances))) + " Acc@161: " + str(int(acc_at_161)))
return np.mean(distances), np.median(distances), acc_at_161, distances, latlon_true, latlon_pred
def iterate_minibatches(inputs, targets, batchsize, shuffle=False):
assert inputs.shape[0] == targets.shape[0]
if shuffle:
indices = np.arange(inputs.shape[0])
np.random.shuffle(indices)
for start_idx in range(0, inputs.shape[0] - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield inputs[excerpt], targets[excerpt]
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0)
def preprocess_data(data_home, **kwargs):
bucket_size = kwargs.get('bucket', 300)
encoding = kwargs.get('encoding', 'utf-8')
celebrity_threshold = kwargs.get('celebrity', 10)
mindf = kwargs.get('mindf', 10)
dtype = kwargs.get('dtype', 'float32')
one_hot_label = kwargs.get('onehot', False)
vocab_file = os.path.join(data_home, 'vocab.pkl')
dump_file = os.path.join(data_home, 'dump.pkl')
if os.path.exists(dump_file) and not model_args.builddata:
logging.info('loading data from dumped file...')
data = load_obj(dump_file)
logging.info('loading data finished!')
return data
dl = DataLoader(data_home=data_home, bucket_size=bucket_size, encoding=encoding,
celebrity_threshold=celebrity_threshold, one_hot_labels=one_hot_label, mindf=mindf, token_pattern=r'(?u)(?<![@])#?\b\w\w+\b')
dl.load_data()
dl.assignClasses()
dl.tfidf()
vocab = dl.vectorizer.vocabulary_
logging.info('saving vocab in {}'.format(vocab_file))
dump_obj(vocab, vocab_file)
logging.info('vocab dumped successfully!')
U_test = dl.df_test.index.tolist()
U_dev = dl.df_dev.index.tolist()
U_train = dl.df_train.index.tolist()
dl.get_graph()
logging.info('creating adjacency matrix...')
adj = nx.adjacency_matrix(dl.graph, nodelist=range(len(U_train + U_dev + U_test)), weight='w')
adj.setdiag(0)
#selfloop_value = np.asarray(adj.sum(axis=1)).reshape(-1,)
selfloop_value = 1
adj.setdiag(selfloop_value)
n,m = adj.shape
diags = adj.sum(axis=1).flatten()
with sp.errstate(divide='ignore'):
diags_sqrt = 1.0/sp.sqrt(diags)
diags_sqrt[sp.isinf(diags_sqrt)] = 0
D_pow_neghalf = sp.sparse.spdiags(diags_sqrt, [0], m, n, format='csr')
A = D_pow_neghalf * adj * D_pow_neghalf
A = A.astype(dtype)
logging.info('adjacency matrix created.')
X_train = dl.X_train
X_dev = dl.X_dev
X_test = dl.X_test
Y_test = dl.test_classes
Y_train = dl.train_classes
Y_dev = dl.dev_classes
classLatMedian = {str(c):dl.cluster_median[c][0] for c in dl.cluster_median}
classLonMedian = {str(c):dl.cluster_median[c][1] for c in dl.cluster_median}
P_test = [str(a[0]) + ',' + str(a[1]) for a in dl.df_test[['lat', 'lon']].values.tolist()]
P_train = [str(a[0]) + ',' + str(a[1]) for a in dl.df_train[['lat', 'lon']].values.tolist()]
P_dev = [str(a[0]) + ',' + str(a[1]) for a in dl.df_dev[['lat', 'lon']].values.tolist()]
userLocation = {}
for i, u in enumerate(U_train):
userLocation[u] = P_train[i]
for i, u in enumerate(U_test):
userLocation[u] = P_test[i]
for i, u in enumerate(U_dev):
userLocation[u] = P_dev[i]
data = (A, X_train, Y_train, X_dev, Y_dev, X_test, Y_test, U_train, U_dev, U_test, classLatMedian, classLonMedian, userLocation)
if not model_args.builddata:
logging.info('dumping data in {} ...'.format(str(dump_file)))
dump_obj(data, dump_file)
logging.info('data dump finished!')
return data
def main(data, args, **kwargs):
batch_size = kwargs.get('batch', 500)
hidden_size = kwargs.get('hidden', [100])
dropout = kwargs.get('dropout', 0.0)
regul = kwargs.get('regularization', 1e-6)
dtype = 'float32'
dtypeint = 'int32'
check_percentiles = kwargs.get('percent', False)
A, X_train, Y_train, X_dev, Y_dev, X_test, Y_test, U_train, U_dev, U_test, classLatMedian, classLonMedian, userLocation = data
logging.info('stacking training, dev and test features and creating indices...')
X = sp.sparse.vstack([X_train, X_dev, X_test])
if len(Y_train.shape) == 1:
Y = np.hstack((Y_train, Y_dev, Y_test))
else:
Y = np.vstack((Y_train, Y_dev, Y_test))
Y = Y.astype(dtypeint)
X = X.astype(dtype)
A = A.astype(dtype)
if args.vis:
from deepcca import draw_representations
draw_representations(A.dot(X), Y, filename='gconv1.pdf')
draw_representations(A.dot(A.dot(X)), Y, filename='gconv2.pdf')
input_size = X.shape[1]
output_size = np.max(Y) + 1
verbose = not args.silent
fractions = args.lblfraction
stratified = False
all_train_indices = np.asarray(range(0, X_train.shape[0])).astype(dtypeint)
logging.info('running mlp with graph conv...')
clf = GraphConv(input_size=input_size, output_size=output_size, hid_size_list=hidden_size, regul_coef=regul, drop_out=dropout, batchnorm=args.batchnorm, highway=model_args.highway)
clf.build_model(A, use_text=args.notxt, use_labels=args.lp, seed=model_args.seed)
for percentile in fractions:
logging.info('***********percentile %f ******************' %percentile)
model_file = './data/model-{}-{}.pkl'.format(A.shape[0], percentile)
if stratified:
all_chosen = []
for lbl in range(0, np.max(Y_train) + 1):
lbl_indices = all_train_indices[Y_train == lbl]
selection_size = int(percentile * len(lbl_indices)) + 1
lbl_chosen = np.random.choice(lbl_indices, size=selection_size, replace=False).astype(dtypeint)
all_chosen.append(lbl_chosen)
train_indices = np.hstack(all_chosen)
else:
selection_size = min(int(percentile * X.shape[0]), all_train_indices.shape[0])
train_indices = np.random.choice(all_train_indices, size=selection_size, replace=False).astype(dtypeint)
num_training_samples = train_indices.shape[0]
logging.info('{} training samples'.format(num_training_samples))
#train_indices = np.asarray(range(0, int(percentile * X_train.shape[0]))).astype(dtypeint)
dev_indices = np.asarray(range(X_train.shape[0], X_train.shape[0] + X_dev.shape[0])).astype(dtypeint)
test_indices = np.asarray(range(X_train.shape[0] + X_dev.shape[0], X_train.shape[0] + X_dev.shape[0] + X_test.shape[0])).astype(dtypeint)
# do not train, load
if args.load:
report_results = False
clf.load(load_obj, model_file)
else:
#reset the network parameters if already fitted with another data
if clf.fitted:
clf.reset()
clf.fit(X, A, Y, train_indices=train_indices, val_indices=dev_indices, n_epochs=10000, batch_size=batch_size, max_down=args.maxdown, verbose=verbose, seed=model_args.seed)
if args.save:
clf.save(dump_obj, model_file)
logging.info('dev results:')
y_pred, _ = clf.predict(X, A, dev_indices)
mean, median, acc, distances, latlon_true, latlon_pred = geo_eval(Y_dev, y_pred, U_dev, classLatMedian, classLonMedian, userLocation)
with open('gcn_{}_percent_pred_{}.pkl'.format(percentile, output_size), 'wb') as fout:
pickle.dump((distances, latlon_true, latlon_pred), fout)
logging.info('test results:')
y_pred, _ = clf.predict(X, A, test_indices)
geo_eval(Y_test, y_pred, U_test, classLatMedian, classLonMedian, userLocation)
if args.feature_report:
vocab_file = os.path.join(args.dir, 'vocab.pkl')
if not os.path.exists(vocab_file):
logging.error('vocab file {} not found'.format(vocab_file))
return
else:
vocab = load_obj(vocab_file)
logging.info('{} vocab loaded from file'.format(len(vocab)))
train_vocab = set([term for term, count in Counter(np.nonzero(X[train_indices])[1]).iteritems() if count >= 10])
dev_vocab = set(np.nonzero(X[dev_indices].sum(axis=0))[1])
X_onehot = sp.sparse.diags([1] * len(vocab), dtype=dtype)
A_onehot = X_onehot
feature_report(clf, vocab, X_onehot, A_onehot, classLatMedian, classLonMedian, train_vocab, dev_vocab, topk=200, dtypeint=dtypeint)
def feature_report(model, vocab, X, A, classLatMedian, classLonMedian, train_vocab=set(), dev_vocab=set(), topk=20, dtypeint='int32', filename='important_features.txt'):
eval_indices = np.asarray(range(X.shape[0])).astype(dtypeint)
preds, probs = model.predict(X, A, eval_indices)
id2v = {v: k for k, v in vocab.iteritems()}
logging.info('{} train vocab are being excluded!'.format(len(train_vocab)))
#select top k most important features for each class
feature_importance = np.argsort(-probs, axis=0)
with codecs.open(filename, 'w', encoding='utf-8') as fout:
for lbl in range(probs.shape[1]):
important_vocab = ' '.join([id2v[idx] for idx in feature_importance[:, lbl].reshape(-1).tolist() if idx not in train_vocab][0:topk])
lat, lon = classLatMedian[str(lbl)], classLonMedian[str(lbl)]
fout.write(u'location: {},{} \nimportant features: {} \n\n'.format(lat, lon, important_vocab))
logging.info('important features are written to {}'.format(filename))
def parse_args(argv):
"""
Parse commandline arguments.
Arguments:
argv -- An argument list without the program name.
"""
parser = argparse.ArgumentParser()
parser.add_argument( '-i','--dataset', metavar='str', help='dataset for dialectology', type=str, default='na')
parser.add_argument( '-bucket','--bucket', metavar='int', help='discretisation bucket size', type=int, default=300)
parser.add_argument( '-batch','--batch', metavar='int', help='SGD batch size', type=int, default=500)
parser.add_argument('-hid', nargs='+', type=int, help="list of hidden layer sizes", default=[100])
parser.add_argument( '-mindf','--mindf', metavar='int', help='minimum document frequency in BoW', type=int, default=10)
parser.add_argument( '-d','--dir', metavar='str', help='home directory', type=str, default='./data')
parser.add_argument( '-enc','--encoding', metavar='str', help='Data Encoding (e.g. latin1, utf-8)', type=str, default='utf-8')
parser.add_argument( '-reg','--regularization', metavar='float', help='regularization coefficient)', type=float, default=1e-6)
parser.add_argument( '-cel','--celebrity', metavar='int', help='celebrity threshold', type=int, default=10)
parser.add_argument( '-conv', '--convolution', action='store_true', help='if true do convolution')
parser.add_argument( '-tune', '--tune', action='store_true', help='if true tune the hyper-parameters')
parser.add_argument( '-tf', '--tensorflow', action='store_true', help='if exists run with tensorflow')
parser.add_argument( '-batchnorm', action='store_true', help='if exists do batch normalization')
parser.add_argument('-dropout', type=float, help="dropout value default(0)", default=0)
parser.add_argument( '-percent', action='store_true', help='if exists loop over different train/dev proportions')
parser.add_argument( '-vis', metavar='str', help='visualise representations', type=str, default=None)
parser.add_argument('-builddata', action='store_true', help='if exists do not reload dumped data, build it from scratch')
parser.add_argument('-lp', action='store_true', help='if exists use label information')
parser.add_argument('-notxt', action='store_false', help='if exists do not use text information')
parser.add_argument( '-maxdown', help='max iter for early stopping', type=int, default=10)
parser.add_argument('-silent', action='store_true', help='if exists be silent during training')
parser.add_argument('-highway', action='store_true', help='if exists use highway connections else do not')
parser.add_argument( '-seed', metavar='int', help='random seed', type=int, default=77)
parser.add_argument('-save', action='store_true', help='if exists save the model after training')
parser.add_argument('-load', action='store_true', help='if exists load pretrained model from file')
parser.add_argument('-feature_report', action='store_true', help='if exists report the important features of each location')
parser.add_argument('-lblfraction', nargs='+', type=float, help="fraction of labelled data used for training e.g. 0.01 0.1", default=[1.0])
args = parser.parse_args(argv)
return args
if __name__ == '__main__':
args = parse_args(sys.argv[1:])
model_args = args
data = preprocess_data(data_home=args.dir, encoding=args.encoding, celebrity=args.celebrity, bucket=args.bucket, mindf=args.mindf)
main(data, args, batch=args.batch, hidden=args.hid, regularization=args.regularization, dropout=args.dropout, percent=args.percent)