-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathgcnmodel.py
484 lines (390 loc) · 19.9 KB
/
gcnmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
from __future__ import print_function
import pdb
import numpy as np
import sys
from os import path
import scipy as sp
import theano
from lasagne.utils import floatX
import theano.tensor as T
import lasagne
from lasagne.regularization import regularize_layer_params_weighted, l2, l1
from lasagne.regularization import regularize_layer_params
import theano.sparse as S
from lasagne.layers import DenseLayer, DropoutLayer
from sklearn.preprocessing import normalize
import logging
import json
import codecs
import pickle
import gzip
from collections import OrderedDict
from _collections import defaultdict
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO)
'''
These sparse classes are copied from https://github.com/Lasagne/Lasagne/pull/596/commits
'''
class SparseInputDenseLayer(DenseLayer):
'''
An input layer for sparse input and dense output data.
'''
def get_output_for(self, input, **kwargs):
if not isinstance(input, (S.SparseVariable, S.SparseConstant,
S.sharedvar.SparseTensorSharedVariable)):
raise ValueError("Input for this layer must be sparse")
#activation = S.dot(input, self.W)
activation = S.structured_dot(input, self.W)
if self.b is not None:
activation = activation + self.b.dimshuffle('x', 0)
return self.nonlinearity(activation)
class SparseInputDropoutLayer(DropoutLayer):
'''
A dropout layer for sparse input data, note that this layer
can not be applied to the output of SparseInputDenseLayer
because the output of SparseInputDenseLayer is dense.
'''
def get_output_for(self, input, deterministic=False, **kwargs):
if not isinstance(input, (S.SparseVariable, S.SparseConstant,
S.sharedvar.SparseTensorSharedVariable)):
raise ValueError("Input for this layer must be sparse")
if deterministic or self.p == 0:
return input
else:
# Using Theano constant to prevent upcasting
one = T.constant(1, name='one')
retain_prob = one - self.p
if self.rescale:
input = S.mul(input, one/retain_prob)
input_shape = self.input_shape
if any(s is None for s in input_shape):
input_shape = input.shape
return input * self._srng.binomial(input_shape, p=retain_prob,
dtype=input.dtype)
class SparseConvolutionDenseLayer(DenseLayer):
'''
A graph convolutional layer where input is sparse and output is dense
'''
def __init__(self, incoming, A=None, **kwargs):
super(SparseConvolutionDenseLayer, self).__init__(incoming, **kwargs)
self.A = A
def get_output_for(self, input, **kwargs):
if not isinstance(input, (S.SparseVariable, S.SparseConstant,
S.sharedvar.SparseTensorSharedVariable)):
raise ValueError("Input for this layer must be sparse")
activation = S.structured_dot(input, self.W)
#do the convolution
activation = S.structured_dot(self.A, activation)
if self.b is not None:
activation = activation + self.b.dimshuffle('x', 0)
return self.nonlinearity(activation)
class ConvolutionDenseLayer(DenseLayer):
'''
A graph convolutional layer where input and output are both dense.
'''
def __init__(self, incoming, A=None, **kwargs):
super(ConvolutionDenseLayer, self).__init__(incoming, **kwargs)
self.A = A
def get_output_for(self, input, **kwargs):
target_indices = kwargs.get('target_indices')
activation = T.dot(input, self.W)
#do the convolution
activation = S.structured_dot(self.A, activation)
if self.b is not None:
activation = activation + self.b.dimshuffle('x', 0)
activation = activation[target_indices, :]
return self.nonlinearity(activation)
class ConvolutionDenseLayer2(DenseLayer):
'''
A graph convolutional layer where input and output are both dense.
In this class H is passed as argument to get_output instead of being
the parameter of the layer.
'''
def __init__(self, incoming, use_target_indices=False, **kwargs):
super(ConvolutionDenseLayer2, self).__init__(incoming, **kwargs)
self.use_target_indices = use_target_indices
def get_output_for(self, input, A=None, target_indices=None, **kwargs):
activation = T.dot(input, self.W)
#do the convolution
if A:
activation = S.structured_dot(A, activation)
if self.b is not None:
activation = activation + self.b.dimshuffle('x', 0)
if self.use_target_indices and target_indices:
activation = activation[target_indices, :]
return self.nonlinearity(activation)
class ConvolutionDenseLayer3(DenseLayer):
'''
A graph convolutional layer where input and output are both dense.
In this class H is passed as argument to get_output instead of being
the parameter of the layer.
'''
def __init__(self, incoming, **kwargs):
super(ConvolutionDenseLayer3, self).__init__(incoming, **kwargs)
def get_output_for(self, input, A=None, **kwargs):
activation = T.dot(input, self.W)
#do the convolution
if A:
activation = S.structured_dot(A, activation)
if self.b is not None:
activation = activation + self.b.dimshuffle('x', 0)
return self.nonlinearity(activation)
class ConvolutionDenseLayer_zero(DenseLayer):
'''
A graph convolutional layer where input and output are both dense.
In this class H is passed as argument to get_output instead of being
the parameter of the layer.
'''
def __init__(self, incoming, A=None, **kwargs):
super(ConvolutionDenseLayer_zero, self).__init__(incoming, **kwargs)
self.A = A
def get_output_for(self, input, **kwargs):
activation = T.dot(input, self.W)
#do the convolution
activation = S.structured_dot(self.A, activation)
if self.b is not None:
activation = activation + self.b.dimshuffle('x', 0)
return self.nonlinearity(activation)
class ConvolutionLayer(lasagne.layers.Layer):
'''
A graph convolutional layer where input and output are both dense.
In this class H is passed as argument to get_output instead of being
the parameter of the layer.
'''
def __init__(self, incoming, use_target_indices=False, A=None, nonlinearity=lasagne.nonlinearities.linear, **kwargs):
super(ConvolutionLayer, self).__init__(incoming, **kwargs)
self.use_target_indices = use_target_indices
self.A = A
self.nonlinearity = nonlinearity
def get_output_for(self, input, target_indices=None, **kwargs):
#do the convolution
activation = S.structured_dot(self.A, input)
if self.use_target_indices and target_indices:
activation = activation[target_indices, :]
return self.nonlinearity(activation)
class DenseLayer2(DenseLayer):
'''
A graph convolutional layer where input and output are both dense.
In this class H is passed as argument to get_output instead of being
the parameter of the layer.
'''
def __init__(self, incoming, use_target_indices=False, **kwargs):
super(DenseLayer2, self).__init__(incoming, **kwargs)
self.use_target_indices = use_target_indices
def get_output_for(self, input, target_indices=None, **kwargs):
activation = T.dot(input, self.W)
if self.b is not None:
activation = activation + self.b.dimshuffle('x', 0)
if self.use_target_indices and target_indices:
activation = activation[target_indices, :]
return self.nonlinearity(activation)
class SparseConvolutionDenseLayer2(DenseLayer):
'''
A graph convolutional layer where input is sparse and output is dense
In this class H is passed as argument to get_output instead of being
the parameter of the layer.
'''
def __init__(self, incoming, use_target_indices=False, **kwargs):
super(SparseConvolutionDenseLayer2, self).__init__(incoming, **kwargs)
self.use_target_indices = use_target_indices
def get_output_for(self, input, A=None, **kwargs):
if not isinstance(input, (S.SparseVariable, S.SparseConstant,
S.sharedvar.SparseTensorSharedVariable)):
raise ValueError("Input for this layer must be sparse")
activation = S.structured_dot(input, self.W)
if A:
#do the convolution
activation = S.structured_dot(A, activation)
if self.b is not None:
activation = activation + self.b.dimshuffle('x', 0)
return self.nonlinearity(activation)
class MultiplicativeGatingLayer(lasagne.layers.MergeLayer):
"""
Generic layer that combines its 3 inputs t, h1, h2 as follows:
y = t * h1 + (1 - t) * h2
"""
def __init__(self, gate, input1, input2, **kwargs):
incomings = [gate, input1, input2]
super(MultiplicativeGatingLayer, self).__init__(incomings, **kwargs)
assert gate.output_shape == input1.output_shape == input2.output_shape
def get_output_shape_for(self, input_shapes):
return input_shapes[0]
def get_output_for(self, inputs, **kwargs):
return inputs[0] * inputs[1] + (1.0 - inputs[0]) * inputs[2]
def highway_dense(incoming, gconv=False,
#Wh=lasagne.init.Orthogonal(),
Wh=lasagne.init.GlorotUniform(),
bh=lasagne.init.Constant(0.0),
#Wt=lasagne.init.Orthogonal(),
Wt=lasagne.init.GlorotUniform(),
bt=lasagne.init.Constant(-4.0),
nonlinearity=lasagne.nonlinearities.sigmoid, **kwargs):
num_inputs = int(np.prod(incoming.output_shape[1:]))
#bt should be set to -2 according to http://people.idsia.ch/~rupesh/very_deep_learning/ and kim et al 2015
# regular layer
#l_h = nn.layers.DenseLayer(incoming, num_units=num_inputs, W=Wh, b=bh, nonlinearity=nonlinearity)
if gconv:
l_h = ConvolutionDenseLayer2(incoming, num_units=num_inputs, W=Wh, b=bh, nonlinearity=nonlinearity)
else:
l_h = lasagne.layers.DenseLayer(incoming, num_units=num_inputs, W=Wh, b=bh, nonlinearity=nonlinearity)
# gate layer
l_t = lasagne.layers.DenseLayer(incoming, num_units=num_inputs, W=Wt, b=bt,
nonlinearity=T.nnet.sigmoid)
return MultiplicativeGatingLayer(gate=l_t, input1=l_h, input2=incoming), l_t
def residual_dense(incoming, nonlinearity=lasagne.nonlinearities.selu):
num_inputs = int(np.prod(incoming.output_shape[1:]))
convX = ConvolutionDenseLayer2(incoming, num_units=num_inputs, nonlinearity=None)
convX_plus_X = lasagne.layers.ElemwiseSumLayer([convX, incoming], coeffs=1, cropping=None)
return lasagne.layers.NonlinearityLayer(convX_plus_X, nonlinearity=nonlinearity)
def np_softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()
def iterate_minibatches(inputs, targets, batchsize, shuffle=False):
assert inputs.shape[0] == targets.shape[0]
if shuffle:
indices = np.arange(inputs.shape[0])
np.random.shuffle(indices)
for start_idx in range(0, inputs.shape[0] - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield inputs[excerpt], targets[excerpt]
class GraphConv():
'''
A general theano-based graph convolutional neural network model based in Kipf (2016).
Note that the input is assumed to be sparse (as in BoW model of text).
'''
def __init__(self, input_size, output_size, hid_size_list, regul_coef, drop_out, dtype='float32', batchnorm=False, highway=True):
self.input_size = input_size
self.output_size = output_size
self.hid_size_list = hid_size_list
self.regul_coef = regul_coef
self.drop_out = drop_out
self.dtype=dtype
self.dtypeint = 'int64' if self.dtype == 'float64' else 'int32'
self.fitted = False
self.batchnorm = batchnorm
self.highway = highway
logging.info('highway is {}'.format(self.highway))
def build_model(self, A, use_text=True, use_labels=True, seed=77):
np.random.seed(seed)
logging.info('Graphconv model input size {}, output size {} and hidden layers {} regul {} dropout {}.'.format(self.input_size, self.output_size, str(self.hid_size_list), self.regul_coef, self.drop_out))
self.X_sym = S.csr_matrix(name='inputs', dtype=self.dtype)
self.train_indices_sym = T.lvector()
self.dev_indices_sym = T.lvector()
self.test_indices_sym = T.lvector()
self.A_sym = S.csr_matrix(name='NormalizedAdj', dtype=self.dtype)
self.train_y_sym = T.lvector()
self.dev_y_sym = T.lvector()
#nonlinearity = lasagne.nonlinearities.rectify
#Wh = lasagne.init.GlorotUniform(gain='relu')
nonlinearity = lasagne.nonlinearities.tanh
Wh = lasagne.init.GlorotUniform(gain=1)
#input layer
l_in = lasagne.layers.InputLayer(shape=(None, self.input_size),
input_var=self.X_sym)
l_hid = SparseInputDenseLayer(l_in, num_units=self.hid_size_list[0], nonlinearity=nonlinearity)
#add hidden layers
l_hid = lasagne.layers.dropout(l_hid, p=self.drop_out)
num_inputs_txt = int(np.prod(l_hid.output_shape[1:]))
Wt_txt = lasagne.init.Orthogonal()
self.gate_layers = []
logging.info('{} gconv layers'.format(len(self.hid_size_list)))
if len(self.hid_size_list) > 1:
for i, hid_size in enumerate(self.hid_size_list):
if i == 0:
#we have already added the first hidden layer which is nonconvolutional
continue
else:
if self.highway:
l_hid, l_t_hid = highway_dense(l_hid, gconv=True, nonlinearity=nonlinearity, Wt=Wt_txt, Wh=Wh)
self.gate_layers.append(l_t_hid)
else:
l_hid = ConvolutionDenseLayer2(l_hid, num_units=hid_size, nonlinearity=nonlinearity)
self.l_out = ConvolutionDenseLayer3(l_hid, num_units=self.output_size, nonlinearity=lasagne.nonlinearities.softmax)
self.output = lasagne.layers.get_output(self.l_out, {l_in:self.X_sym}, A=self.A_sym, deterministic=False)
self.train_output = self.output[self.train_indices_sym, :]
self.train_pred = self.train_output.argmax(-1)
self.dev_output = self.output[self.dev_indices_sym, :]
self.dev_pred = self.dev_output.argmax(-1)
self.train_acc = T.mean(T.eq(self.train_pred, self.train_y_sym))
self.dev_acc = T.mean(T.eq(self.dev_pred, self.dev_y_sym))
self.train_loss = lasagne.objectives.categorical_crossentropy(self.train_output, self.train_y_sym).mean()
if self.regul_coef > 0:
#add l1 regularization
self.train_loss += lasagne.regularization.regularize_network_params(self.l_out, penalty=lasagne.regularization.l1) * self.regul_coef
#add l2 regularization
self.train_loss += lasagne.regularization.regularize_network_params(self.l_out, penalty=lasagne.regularization.l2) * self.regul_coef
self.dev_loss = lasagne.objectives.categorical_crossentropy(self.dev_output, self.dev_y_sym).mean()
#deterministic output
self.determ_output = lasagne.layers.get_output(self.l_out, {l_in:self.X_sym}, A=self.A_sym, deterministic=True)
self.test_output = self.determ_output[self.test_indices_sym, :]
self.test_pred = self.test_output.argmax(-1)
self.gate_outputs = []
self.f_gates = []
for i, l in enumerate(self.gate_layers):
self.gate_outputs.append(lasagne.layers.get_output(l, {l_in:self.X_sym}, A=self.A_sym, deterministic=True))
self.f_gates.append(theano.function([self.X_sym, self.A_sym], self.gate_outputs[i], on_unused_input='warn'))
parameters = lasagne.layers.get_all_params(self.l_out, trainable=True)
updates = lasagne.updates.adam(self.train_loss, parameters, learning_rate=2e-3, beta1=0.9, beta2=0.999, epsilon=1e-8)
self.f_train = theano.function([self.X_sym, self.train_y_sym, self.dev_y_sym, self.A_sym, self.train_indices_sym, self.dev_indices_sym],
[self.train_loss, self.train_acc, self.dev_loss, self.dev_acc, self.output], updates=updates, on_unused_input='warn')#, mode=theano.compile.MonitorMode(pre_func=inspect_inputs, post_func=inspect_outputs))
self.f_val = theano.function([self.X_sym, self.A_sym, self.test_indices_sym], [self.test_pred, self.test_output], on_unused_input='warn')
self.init_params = lasagne.layers.get_all_param_values(self.l_out)
return self.l_out
def fit(self, X, H, Y, train_indices, val_indices, n_epochs=10000, batch_size=1000, max_down=10, pseudolikelihood_thresh=0.2, verbose=True, seed=77):
np.random.seed(seed)
logging.info('training for {} epochs with batch size {}'.format(n_epochs, batch_size))
best_params = None
best_val_loss = sys.maxsize
best_val_acc = 0.0
n_validation_down = 0
report_k_epoch = 1
X_train, y_train = X, Y[train_indices]
y_dev = Y[val_indices]
for n in range(n_epochs):
l_train, acc_train, l_val, acc_val, all_probs = self.f_train(X_train, y_train, y_dev, H, train_indices, val_indices)
l_train, acc_train = l_train.item(), acc_train.item()
l_val, acc_val = l_val.item(), acc_val.item()
if l_val < best_val_loss:
best_val_loss = l_val
best_val_acc = acc_val
best_params = lasagne.layers.get_all_param_values(self.l_out)
n_validation_down = 0
else:
#early stopping
n_validation_down += 1
if verbose:
if n % report_k_epoch == 0:
logging.info('epoch {} train loss {:.2f} train acc {:.2f} val loss {:.2f} val acc {:.2f} best val acc {:.2f} maxdown {}'.format(n, l_train, acc_train, l_val, acc_val, best_val_acc, n_validation_down))
if n_validation_down > max_down and n > 2 * report_k_epoch * max_down:
logging.info('validation results went down. early stopping ...')
break
self.best_params = best_params
lasagne.layers.set_all_param_values(self.l_out, best_params)
self.fitted = True
def predict(self, X, A, test_indices):
preds_test, prob_test = self.f_val(X, A, test_indices)
return preds_test, prob_test
def reset(self):
lasagne.layers.set_all_param_values(self.l_out, self.init_params)
def save(self, dumper, filename='./model.pkl'):
if self.fitted:
logging.info('dumping model params in {}'.format(filename))
dumper(self.best_params, filename)
else:
logging.warn('The model is not trained yet!')
def load(self, loader, filename):
logging.info('loading the model from {}'.format(filename))
self.best_params = loader(filename)
lasagne.layers.set_all_param_values(self.l_out, self.best_params)
self.fitted = True
def get_gates(self, X, A):
gates = []
for fn in self.f_gates:
gate = fn(X, A)
gates.append(gate)
return gates
if __name__ == '__main__':
pass