forked from amauryfa/lxml
-
Notifications
You must be signed in to change notification settings - Fork 4
/
DD.py
916 lines (699 loc) · 27.9 KB
/
DD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
#! /usr/bin/env python
# $Id: DD.py,v 1.2 2001/11/05 19:53:33 zeller Exp $
# Enhanced Delta Debugging class
# Copyright (c) 1999, 2000, 2001 Andreas Zeller.
# This module (written in Python) implements the base delta debugging
# algorithms and is at the core of all our experiments. This should
# easily run on any platform and any Python version since 1.6.
#
# To plug this into your system, all you have to do is to create a
# subclass with a dedicated `test()' method. Basically, you would
# invoke the DD test case minimization algorithm (= the `ddmin()'
# method) with a list of characters; the `test()' method would combine
# them to a document and run the test. This should be easy to realize
# and give you some good starting results; the file includes a simple
# sample application.
#
# This file is in the public domain; feel free to copy, modify, use
# and distribute this software as you wish - with one exception.
# Passau University has filed a patent for the use of delta debugging
# on program states (A. Zeller: `Isolating cause-effect chains',
# Saarland University, 2001). The fact that this file is publicly
# available does not imply that I or anyone else grants you any rights
# related to this patent.
#
# The use of Delta Debugging to isolate failure-inducing code changes
# (A. Zeller: `Yesterday, my program worked', ESEC/FSE 1999) or to
# simplify failure-inducing input (R. Hildebrandt, A. Zeller:
# `Simplifying failure-inducing input', ISSTA 2000) is, as far as I
# know, not covered by any patent, nor will it ever be. If you use
# this software in any way, I'd appreciate if you include a citation
# such as `This software uses the delta debugging algorithm as
# described in (insert one of the papers above)'.
#
# All about Delta Debugging is found at the delta debugging web site,
#
# http://www.st.cs.uni-sb.de/dd/
#
# Happy debugging,
#
# Andreas Zeller
# Start with some helpers.
class OutcomeCache(object):
# This class holds test outcomes for configurations. This avoids
# running the same test twice.
# The outcome cache is implemented as a tree. Each node points
# to the outcome of the remaining list.
#
# Example: ([1, 2, 3], PASS), ([1, 2], FAIL), ([1, 4, 5], FAIL):
#
# (2, FAIL)--(3, PASS)
# /
# (1, None)
# \
# (4, None)--(5, FAIL)
def __init__(self):
self.tail = {} # Points to outcome of tail
self.result = None # Result so far
def add(self, c, result):
"""Add (C, RESULT) to the cache. C must be a list of scalars."""
cs = c[:]
cs.sort()
p = self
for start in c:
if start not in p.tail:
p.tail[start] = OutcomeCache()
p = p.tail[start]
p.result = result
def lookup(self, c):
"""Return RESULT if (C, RESULT) is in the cache; None, otherwise."""
p = self
for start in c:
if start not in p.tail:
return None
p = p.tail[start]
return p.result
def lookup_superset(self, c, start = 0):
"""Return RESULT if there is some (C', RESULT) in the cache with
C' being a superset of C or equal to C. Otherwise, return None."""
# FIXME: Make this non-recursive!
if start >= len(c):
if self.result:
return self.result
elif self.tail != {}:
# Select some superset
superset = self.tail[list(self.tail.keys())[0]]
return superset.lookup_superset(c, start + 1)
else:
return None
if c[start] in self.tail:
return self.tail[c[start]].lookup_superset(c, start + 1)
# Let K0 be the largest element in TAIL such that K0 <= C[START]
k0 = None
for k in self.tail.keys():
if (k0 == None or k > k0) and k <= c[start]:
k0 = k
if k0 != None:
return self.tail[k0].lookup_superset(c, start)
return None
def lookup_subset(self, c):
"""Return RESULT if there is some (C', RESULT) in the cache with
C' being a subset of C or equal to C. Otherwise, return None."""
p = self
for start in range(len(c)):
if c[start] in p.tail:
p = p.tail[c[start]]
return p.result
# Test the outcome cache
def oc_test():
oc = OutcomeCache()
assert oc.lookup([1, 2, 3]) == None
oc.add([1, 2, 3], 4)
assert oc.lookup([1, 2, 3]) == 4
assert oc.lookup([1, 2, 3, 4]) == None
assert oc.lookup([5, 6, 7]) == None
oc.add([5, 6, 7], 8)
assert oc.lookup([5, 6, 7]) == 8
assert oc.lookup([]) == None
oc.add([], 0)
assert oc.lookup([]) == 0
assert oc.lookup([1, 2]) == None
oc.add([1, 2], 3)
assert oc.lookup([1, 2]) == 3
assert oc.lookup([1, 2, 3]) == 4
assert oc.lookup_superset([1]) == 3 or oc.lookup_superset([1]) == 4
assert oc.lookup_superset([1, 2]) == 3 or oc.lookup_superset([1, 2]) == 4
assert oc.lookup_superset([5]) == 8
assert oc.lookup_superset([5, 6]) == 8
assert oc.lookup_superset([6, 7]) == 8
assert oc.lookup_superset([7]) == 8
assert oc.lookup_superset([]) != None
assert oc.lookup_superset([9]) == None
assert oc.lookup_superset([7, 9]) == None
assert oc.lookup_superset([-5, 1]) == None
assert oc.lookup_superset([1, 2, 3, 9]) == None
assert oc.lookup_superset([4, 5, 6, 7]) == None
assert oc.lookup_subset([]) == 0
assert oc.lookup_subset([1, 2, 3]) == 4
assert oc.lookup_subset([1, 2, 3, 4]) == 4
assert oc.lookup_subset([1, 3]) == None
assert oc.lookup_subset([1, 2]) == 3
assert oc.lookup_subset([-5, 1]) == None
assert oc.lookup_subset([-5, 1, 2]) == 3
assert oc.lookup_subset([-5]) == 0
# Main Delta Debugging algorithm.
class DD(object):
# Delta debugging base class. To use this class for a particular
# setting, create a subclass with an overloaded `test()' method.
#
# Main entry points are:
# - `ddmin()' which computes a minimal failure-inducing configuration, and
# - `dd()' which computes a minimal failure-inducing difference.
#
# See also the usage sample at the end of this file.
#
# For further fine-tuning, you can implement an own `resolve()'
# method (tries to add or remove configuration elements in case of
# inconsistencies), or implement an own `split()' method, which
# allows you to split configurations according to your own
# criteria.
#
# The class includes other previous delta debugging alorithms,
# which are obsolete now; they are only included for comparison
# purposes.
# Test outcomes.
PASS = "PASS"
FAIL = "FAIL"
UNRESOLVED = "UNRESOLVED"
# Resolving directions.
ADD = "ADD" # Add deltas to resolve
REMOVE = "REMOVE" # Remove deltas to resolve
# Debugging output (set to 1 to enable)
debug_test = 0
debug_dd = 0
debug_split = 0
debug_resolve = 0
def __init__(self):
self.__resolving = 0
self.__last_reported_length = 0
self.monotony = 0
self.outcome_cache = OutcomeCache()
self.cache_outcomes = 1
self.minimize = 1
self.maximize = 1
self.assume_axioms_hold = 1
# Helpers
def __listminus(self, c1, c2):
"""Return a list of all elements of C1 that are not in C2."""
s2 = {}
for delta in c2:
s2[delta] = 1
c = []
for delta in c1:
if delta not in s2:
c.append(delta)
return c
def __listintersect(self, c1, c2):
"""Return the common elements of C1 and C2."""
s2 = {}
for delta in c2:
s2[delta] = 1
c = []
for delta in c1:
if delta in s2:
c.append(delta)
return c
def __listunion(self, c1, c2):
"""Return the union of C1 and C2."""
s1 = {}
for delta in c1:
s1[delta] = 1
c = c1[:]
for delta in c2:
if delta not in s1:
c.append(delta)
return c
def __listsubseteq(self, c1, c2):
"""Return 1 if C1 is a subset or equal to C2."""
s2 = {}
for delta in c2:
s2[delta] = 1
for delta in c1:
if delta not in s2:
return 0
return 1
# Output
def coerce(self, c):
"""Return the configuration C as a compact string"""
# Default: use printable representation
return repr(c)
def pretty(self, c):
"""Like coerce(), but sort beforehand"""
sorted_c = c[:]
sorted_c.sort()
return self.coerce(sorted_c)
# Testing
def test(self, c):
"""Test the configuration C. Return PASS, FAIL, or UNRESOLVED"""
c.sort()
# If we had this test before, return its result
if self.cache_outcomes:
cached_result = self.outcome_cache.lookup(c)
if cached_result != None:
return cached_result
if self.monotony:
# Check whether we had a passing superset of this test before
cached_result = self.outcome_cache.lookup_superset(c)
if cached_result == self.PASS:
return self.PASS
cached_result = self.outcome_cache.lookup_subset(c)
if cached_result == self.FAIL:
return self.FAIL
if self.debug_test:
print('')
print("test(%s)..." % (self.coerce(c),))
outcome = self._test(c)
if self.debug_test:
print("test(%s) = %r" % (self.coerce(c), outcome))
if self.cache_outcomes:
self.outcome_cache.add(c, outcome)
return outcome
def _test(self, c):
"""Stub to overload in subclasses"""
return self.UNRESOLVED # Placeholder
# Splitting
def split(self, c, n):
"""Split C into [C_1, C_2, ..., C_n]."""
if self.debug_split:
print("split(%s, %r)..." % (self.coerce(c), n))
outcome = self._split(c, n)
if self.debug_split:
print("split(%s, %r) = %r" % (self.coerce(c), n, outcome))
return outcome
def _split(self, c, n):
"""Stub to overload in subclasses"""
subsets = []
start = 0
for i in range(n):
subset = c[start:start + (len(c) - start) // (n - i)]
subsets.append(subset)
start = start + len(subset)
return subsets
# Resolving
def resolve(self, csub, c, direction):
"""If direction == ADD, resolve inconsistency by adding deltas
to CSUB. Otherwise, resolve by removing deltas from CSUB."""
if self.debug_resolve:
print("resolve(%r, %s, %r)..." % (csub, self.coerce(c), direction))
outcome = self._resolve(csub, c, direction)
if self.debug_resolve:
print("resolve(%r, %s, %r) = %r" % (csub, self.coerce(c), direction, outcome))
return outcome
def _resolve(self, csub, c, direction):
"""Stub to overload in subclasses."""
# By default, no way to resolve
return None
# Test with fixes
def test_and_resolve(self, csub, r, c, direction):
"""Repeat testing CSUB + R while unresolved."""
initial_csub = csub[:]
c2 = self.__listunion(r, c)
csubr = self.__listunion(csub, r)
t = self.test(csubr)
# necessary to use more resolving mechanisms which can reverse each
# other, can (but needn't) be used in subclasses
self._resolve_type = 0
while t == self.UNRESOLVED:
self.__resolving = 1
csubr = self.resolve(csubr, c, direction)
if csubr == None:
# Nothing left to resolve
break
if len(csubr) >= len(c2):
# Added everything: csub == c2. ("Upper" Baseline)
# This has already been tested.
csubr = None
break
if len(csubr) <= len(r):
# Removed everything: csub == r. (Baseline)
# This has already been tested.
csubr = None
break
t = self.test(csubr)
self.__resolving = 0
if csubr == None:
return self.UNRESOLVED, initial_csub
# assert t == self.PASS or t == self.FAIL
csub = self.__listminus(csubr, r)
return t, csub
# Inquiries
def resolving(self):
"""Return 1 while resolving."""
return self.__resolving
# Logging
def report_progress(self, c, title):
if len(c) != self.__last_reported_length:
print('')
print("%s: %d deltas left: %s" % (title, len(c), self.coerce(c)))
self.__last_reported_length = len(c)
# Delta Debugging (old ESEC/FSE version)
def old_dd(self, c, r = [], n = 2):
"""Return the failure-inducing subset of C"""
assert self.test([]) == dd.PASS
assert self.test(c) == dd.FAIL
if self.debug_dd:
print("dd(%s, %r, %r)..." % (self.pretty(c), r, n))
outcome = self._old_dd(c, r, n)
if self.debug_dd:
print("dd(%s, %r, %r) = %r" % (self.pretty(c), r, n, outcome))
return outcome
def _old_dd(self, c, r, n):
"""Stub to overload in subclasses"""
if r == []:
assert self.test([]) == self.PASS
assert self.test(c) == self.FAIL
else:
assert self.test(r) != self.FAIL
assert self.test(c + r) != self.PASS
assert self.__listintersect(c, r) == []
if len(c) == 1:
# Nothing to split
return c
run = 1
next_c = c[:]
next_r = r[:]
# We replace the tail recursion from the paper by a loop
while 1:
self.report_progress(c, "dd")
cs = self.split(c, n)
print('')
print("dd (run #%r): trying %s" % (run, ' + '.join(map(str, cs))))
print('')
# Check subsets
ts = []
for i in range(n):
if self.debug_dd:
print("dd: trying cs[%d] = %s" % (i, self.pretty(cs[i])))
t, cs[i] = self.test_and_resolve(cs[i], r, c, self.REMOVE)
ts.append(t)
if t == self.FAIL:
# Found
if self.debug_dd:
print("dd: found %d deltas: %s" % (len(cs[i]), self.pretty(cs[i])))
return self.dd(cs[i], r)
# Check complements
cbars = []
tbars = []
for i in range(n):
cbar = self.__listminus(c, cs[i] + r)
tbar, cbar = self.test_and_resolve(cbar, r, c, self.ADD)
doubled = self.__listintersect(cbar, cs[i])
if doubled != []:
cs[i] = self.__listminus(cs[i], doubled)
cbars.append(cbar)
tbars.append(tbar)
if ts[i] == self.PASS and tbars[i] == self.PASS:
# Interference
if self.debug_dd:
print("dd: interference of %s and %s" % (self.pretty(cs[i]), self.pretty(cbars[i])))
d = self.dd(cs[i][:], cbars[i] + r)
dbar = self.dd(cbars[i][:], cs[i] + r)
return d + dbar
if ts[i] == self.UNRESOLVED and tbars[i] == self.PASS:
# Preference
if self.debug_dd:
print("dd: preferring %d deltas: %s" % (len(cs[i]), self.pretty(cs[i])))
return self.dd(cs[i][:], cbars[i] + r)
if ts[i] == self.PASS or tbars[i] == self.FAIL:
if self.debug_dd:
excluded = self.__listminus(next_c, cbars[i])
print("dd: excluding %d deltas: %s" % (len(excluded), self.pretty(excluded)))
if ts[i] == self.PASS:
next_r = self.__listunion(next_r, cs[i])
next_c = self.__listintersect(next_c, cbars[i])
self.report_progress(next_c, "dd")
next_n = min(len(next_c), n * 2)
if next_n == n and next_c[:] == c[:] and next_r[:] == r[:]:
# Nothing left
if self.debug_dd:
print("dd: nothing left")
return next_c
# Try again
if self.debug_dd:
print("dd: try again")
c = next_c
r = next_r
n = next_n
run = run + 1
def test_mix(self, csub, c, direction):
if self.minimize:
(t, csub) = self.test_and_resolve(csub, [], c, direction)
if t == self.FAIL:
return (t, csub)
if self.maximize:
csubbar = self.__listminus(self.CC, csub)
cbar = self.__listminus(self.CC, c)
if direction == self.ADD:
directionbar = self.REMOVE
else:
directionbar = self.ADD
(tbar, csubbar) = self.test_and_resolve(csubbar, [], cbar,
directionbar)
csub = self.__listminus(self.CC, csubbar)
if tbar == self.PASS:
t = self.FAIL
elif tbar == self.FAIL:
t = self.PASS
else:
t = self.UNRESOLVED
return (t, csub)
# Delta Debugging (new ISSTA version)
def ddgen(self, c, minimize, maximize):
"""Return a 1-minimal failing subset of C"""
self.minimize = minimize
self.maximize = maximize
n = 2
self.CC = c
if self.debug_dd:
print("dd(%s, %r)..." % (self.pretty(c), n))
outcome = self._dd(c, n)
if self.debug_dd:
print("dd(%s, %r) = %r" % (self.pretty(c), n, outcome))
return outcome
def _dd(self, c, n):
"""Stub to overload in subclasses"""
assert self.test([]) == self.PASS
run = 1
cbar_offset = 0
# We replace the tail recursion from the paper by a loop
while 1:
tc = self.test(c)
assert tc == self.FAIL or tc == self.UNRESOLVED
if n > len(c):
# No further minimizing
print("dd: done")
return c
self.report_progress(c, "dd")
cs = self.split(c, n)
print('')
print("dd (run #%d): trying %s" % (run, ' + '.join(map(str, cs))))
print('')
c_failed = 0
cbar_failed = 0
next_c = c[:]
next_n = n
# Check subsets
for i in range(n):
if self.debug_dd:
print("dd: trying %s" % (self.pretty(cs[i]),))
(t, cs[i]) = self.test_mix(cs[i], c, self.REMOVE)
if t == self.FAIL:
# Found
if self.debug_dd:
print("dd: found %d deltas: %s" % (len(cs[i]), self.pretty(cs[i])))
c_failed = 1
next_c = cs[i]
next_n = 2
cbar_offset = 0
self.report_progress(next_c, "dd")
break
if not c_failed:
# Check complements
cbars = n * [self.UNRESOLVED]
# print "cbar_offset =", cbar_offset
for j in range(n):
i = int((j + cbar_offset) % n)
cbars[i] = self.__listminus(c, cs[i])
t, cbars[i] = self.test_mix(cbars[i], c, self.ADD)
doubled = self.__listintersect(cbars[i], cs[i])
if doubled != []:
cs[i] = self.__listminus(cs[i], doubled)
if t == self.FAIL:
if self.debug_dd:
print("dd: reduced to %d deltas: %s" % (len(cbars[i]), self.pretty(cbars[i])))
cbar_failed = 1
next_c = self.__listintersect(next_c, cbars[i])
next_n = next_n - 1
self.report_progress(next_c, "dd")
# In next run, start removing the following subset
cbar_offset = i
break
if not c_failed and not cbar_failed:
if n >= len(c):
# No further minimizing
print("dd: done")
return c
next_n = min(len(c), n * 2)
print("dd: increase granularity to %d" % next_n)
cbar_offset = (cbar_offset * next_n) / n
c = next_c
n = next_n
run = run + 1
def ddmin(self, c):
return self.ddgen(c, 1, 0)
def ddmax(self, c):
return self.ddgen(c, 0, 1)
def ddmix(self, c):
return self.ddgen(c, 1, 1)
# General delta debugging (new TSE version)
def dddiff(self, c):
n = 2
if self.debug_dd:
print("dddiff(%s, %d)..." % (self.pretty(c), n))
outcome = self._dddiff([], c, n)
if self.debug_dd:
print("dddiff(%s, %d) = %r" % (self.pretty(c), n, outcome))
return outcome
def _dddiff(self, c1, c2, n):
run = 1
cbar_offset = 0
# We replace the tail recursion from the paper by a loop
while 1:
if self.debug_dd:
print("dd: c1 = %s" % (self.pretty(c1),))
print("dd: c2 = %s" % (self.pretty(c2),))
if self.assume_axioms_hold:
t1 = self.PASS
t2 = self.FAIL
else:
t1 = self.test(c1)
t2 = self.test(c2)
assert t1 == self.PASS
assert t2 == self.FAIL
assert self.__listsubseteq(c1, c2)
c = self.__listminus(c2, c1)
if self.debug_dd:
print("dd: c2 - c1 = %s" % (self.pretty(c),))
if n > len(c):
# No further minimizing
print("dd: done")
return (c, c1, c2)
self.report_progress(c, "dd")
cs = self.split(c, n)
print('')
print("dd (run #%d): trying %s" % (run, ' + '.join(map(str, cs))))
print('')
progress = 0
next_c1 = c1[:]
next_c2 = c2[:]
next_n = n
# Check subsets
for j in range(n):
i = int((j + cbar_offset) % n)
if self.debug_dd:
print("dd: trying %s" % (self.pretty(cs[i]),))
(t, csub) = self.test_and_resolve(cs[i], c1, c, self.REMOVE)
csub = self.__listunion(c1, csub)
if t == self.FAIL and t1 == self.PASS:
# Found
progress = 1
next_c2 = csub
next_n = 2
cbar_offset = 0
if self.debug_dd:
print("dd: reduce c2 to %d deltas: %s" % (len(next_c2), self.pretty(next_c2)))
break
if t == self.PASS and t2 == self.FAIL:
# Reduce to complement
progress = 1
next_c1 = csub
next_n = max(next_n - 1, 2)
cbar_offset = i
if self.debug_dd:
print("dd: increase c1 to %d deltas: %s", (len(next_c1), self.pretty(next_c1)))
break
csub = self.__listminus(c, cs[i])
(t, csub) = self.test_and_resolve(csub, c1, c, self.ADD)
csub = self.__listunion(c1, csub)
if t == self.PASS and t2 == self.FAIL:
# Found
progress = 1
next_c1 = csub
next_n = 2
cbar_offset = 0
if self.debug_dd:
print("dd: increase c1 to %d deltas: %s" % (len(next_c1), self.pretty(next_c1)))
break
if t == self.FAIL and t1 == self.PASS:
# Increase
progress = 1
next_c2 = csub
next_n = max(next_n - 1, 2)
cbar_offset = i
if self.debug_dd:
print("dd: reduce c2 to %d deltas: %s" % (len(next_c2), self.pretty(next_c2)))
break
if progress:
self.report_progress(self.__listminus(next_c2, next_c1), "dd")
else:
if n >= len(c):
# No further minimizing
print("dd: done")
return (c, c1, c2)
next_n = min(len(c), n * 2)
print("dd: increase granularity to %d" % next_n)
cbar_offset = (cbar_offset * next_n) / n
c1 = next_c1
c2 = next_c2
n = next_n
run = run + 1
def dd(self, c):
return self.dddiff(c) # Backwards compatibility
if __name__ == '__main__':
# Test the outcome cache
oc_test()
# Define our own DD class, with its own test method
class MyDD(DD):
def _test_a(self, c):
"Test the configuration C. Return PASS, FAIL, or UNRESOLVED."
# Just a sample
# if 2 in c and not 3 in c:
# return self.UNRESOLVED
# if 3 in c and not 7 in c:
# return self.UNRESOLVED
if 7 in c and not 2 in c:
return self.UNRESOLVED
if 5 in c and 8 in c:
return self.FAIL
return self.PASS
def _test_b(self, c):
if c == []:
return self.PASS
if 1 in c and 2 in c and 3 in c and 4 in c and \
5 in c and 6 in c and 7 in c and 8 in c:
return self.FAIL
return self.UNRESOLVED
def _test_c(self, c):
if 1 in c and 2 in c and 3 in c and 4 in c and \
6 in c and 8 in c:
if 5 in c and 7 in c:
return self.UNRESOLVED
else:
return self.FAIL
if 1 in c or 2 in c or 3 in c or 4 in c or \
6 in c or 8 in c:
return self.UNRESOLVED
return self.PASS
def __init__(self):
self._test = self._test_c
DD.__init__(self)
print("WYNOT - a tool for delta debugging.")
mydd = MyDD()
# mydd.debug_test = 1 # Enable debugging output
# mydd.debug_dd = 1 # Enable debugging output
# mydd.debug_split = 1 # Enable debugging output
# mydd.debug_resolve = 1 # Enable debugging output
# mydd.cache_outcomes = 0
# mydd.monotony = 0
print("Minimizing failure-inducing input...")
c = mydd.ddmin([1, 2, 3, 4, 5, 6, 7, 8]) # Invoke DDMIN
print("The 1-minimal failure-inducing input is %s" % (c,))
print("Removing any element will make the failure go away.")
print('')
print("Computing the failure-inducing difference...")
(c, c1, c2) = mydd.dd([1, 2, 3, 4, 5, 6, 7, 8]) # Invoke DD
print("The 1-minimal failure-inducing difference is %s" % (c,))
print("%s passes, %s fails" % (c1, c2))
# Local Variables:
# mode: python
# End: