-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrl.py
236 lines (183 loc) · 8.99 KB
/
rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import random
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import gymnasium as gym
from gymnasium import spaces
from collections import deque
import torch.nn.functional as F
from policy import Policy
class TaskSchedulingEnv(gym.Env):
def __init__(self, sim):
super(TaskSchedulingEnv, self).__init__()
self.sim = sim
self.max_resources = self.sim.get_im_parameter('max_cars')
self.tasks = []
self.resources = []
self.current_task = None
self.done = False
self.best_resource = None
self.current_time = None
self.duration = self.sim.get_im_parameter('duration')
# Statistics
self.stat_best_resource_index = -1
# Define Gymnasium action and observation space
self.action_space = spaces.Discrete(self.max_resources)
# Observation: [resource_count, task_complexity, task_deadline] + resource_cpu_capacity_padded
low_obs = np.array([0.0, 0.0, 0.0] + [0.0] * self.max_resources, dtype=np.float32)
high_obs = np.array([self.max_resources, np.finfo(np.float32).max, np.finfo(np.float32).max] + [np.finfo(np.float32).max] * self.max_resources, dtype=np.float32)
self.observation_space = spaces.Box(low=low_obs, high=high_obs, dtype=np.float32)
self.reset()
def reset(self, seed=None, options=None):
super().reset(seed=seed)
self.tasks = []
self.resources = []
self.done = False
return self._get_state(), {} # Gymnasium expects (obs, info)
def _get_state(self):
task = self.current_task
# Normalize task features
task_complexity_norm = task.complexity / 2 if task else 0
task_deadline_norm = task.deadline / 1 if task else 0
# Min-max scale processing power to [0, 1]
processing_powers_norm = [(res.processing_power - 1) / (3 - 1) for res in self.resources]
# Pad to max_resources
processing_powers_norm += [0] * (self.max_resources - len(processing_powers_norm))
# Normalize num available cars
num_available_norm = len(self.resources) / self.max_resources
return np.array(
[num_available_norm, task_complexity_norm, task_deadline_norm] +
processing_powers_norm,
dtype=np.float32
)
def set_values(self, tasks, idle_cars, time):
self.tasks = tasks
self.current_task = tasks[0]
self.resources = idle_cars
self.current_time = time
# Stat
self.stat_best_resource_index = self.get_best_resource_index() # NOTE: This information can also be obtained at match_task_and_car() from 'cars' list
def step(self, action):
if self.done:
raise RuntimeError("Episode has ended. Please call reset().")
if action >= len(self.resources):
reward = -10.0
else:
resource = self.resources[action]
completion_time = Policy.calculate_completion_time(self.current_time, resource, self.current_task)
resource = self.resources[action]
completion_time = Policy.calculate_completion_time(self.current_time, resource, self.current_task)
best_resource_index = self.get_best_resource_index()
if action == best_resource_index:
if Policy.is_before_deadline(self.current_time, self.current_task, completion_time):
reward = 2.0 # Selected best resource and met deadline
else:
reward = 0.0 # Selected best resource but couldn't meet deadline (no penalty)
else:
reward = -10.0
# NOTE: Here the selected task is returned as info
info = self.current_task
# Housekeeping: Update states and statistics
self.tasks.remove(self.current_task)
self.current_task = None
self.resources.remove(resource)
self.done = self.current_time == self.duration
obs = self._get_state() if not self.done else np.zeros(self.observation_space.shape, dtype=np.float32)
# Gymnasium expects: obs, reward, terminated, truncated, info = {}
return obs, reward, self.done, False, info
def get_best_resource_index(self):
return max(range(len(self.resources)), key=lambda i: self.resources[i].processing_power)
class DQN(nn.Module):
def __init__(self, input_dim, output_dim):
super(DQN, self).__init__()
self.fc1 = nn.Linear(input_dim, 128)
self.fc2 = nn.Linear(128, 128)
self.fc3 = nn.Linear(128, output_dim)
def forward(self, x, valid_mask=None):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
q_values = self.fc3(x)
# Apply action mask: Invalid actions get -inf Q-values
if valid_mask is not None:
q_values = q_values.masked_fill(valid_mask == 0, float('-inf'))
return q_values
class ReplayBuffer:
def __init__(self, capacity, state_size):
self.buffer = deque(maxlen=capacity)
self.state_size = state_size
def push(self, state, action, reward, next_state, done):
if next_state is None:
next_state = np.zeros(self.state_size)
self.buffer.append((state, action, reward, next_state, done))
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
states, actions, rewards, next_states, dones = zip(*batch)
return (torch.FloatTensor(np.array(states)),
torch.LongTensor(actions),
torch.FloatTensor(rewards),
torch.FloatTensor(np.array(next_states)),
torch.FloatTensor(dones))
def __len__(self):
return len(self.buffer)
class DQNAgent:
def __init__(self, rl_env, sim):
self.rl_env = rl_env
self.sim = sim
self.state_size = rl_env.observation_space.shape[0]
self.action_size = rl_env.action_space.n
self.max_resources = rl_env.max_resources
self.lr = self.sim.get_im_parameter('learning_rate')
self.replay_buffer_capacity = self.sim.get_im_parameter('replay_buffer_capacity')
self.gamma = self.sim.get_im_parameter('gamma')
self.batch_size = self.sim.get_im_parameter('batch_size')
self.target_update_freq = self.sim.get_im_parameter('target_update_freq')
self.epsilon_max = self.sim.get_im_parameter('epsilon_max')
self.epsilon = self.epsilon_max
self.epsilon_min = self.sim.get_im_parameter('epsilon_min')
# self.epsilon_decay = self.sim.get_im_parameter('epsilon_decay')
self.epsilon_decay_rate = self.sim.get_im_parameter('epsilon_decay_rate')
self.q_network = DQN(self.state_size, self.action_size)
self.target_network = DQN(self.state_size, self.action_size)
self.target_network.load_state_dict(self.q_network.state_dict())
self.optimizer = optim.Adam(self.q_network.parameters(), lr=self.lr)
self.replay_buffer = ReplayBuffer(self.replay_buffer_capacity, self.state_size)
self.train_step_count = 0
self.explore = self.sim.get_im_parameter('explore')
def take_action(self, state, env):
valid_mask = torch.zeros(self.max_resources)
valid_mask[:len(env.resources)] = 1 # Mark available resources as valid
state_tensor = torch.FloatTensor(state).unsqueeze(0)
q_values = self.q_network(state_tensor, valid_mask)
if random.random() < self.epsilon: # Exploration
valid_actions = torch.where(valid_mask == 1)[0].tolist()
return random.choice(valid_actions) if valid_actions else 0 # Prevent errors
else: # Exploitation
return torch.argmax(q_values).item()
def update(self):
if len(self.replay_buffer) < self.batch_size: #OK
return
# This is a batch
states, actions, rewards, next_states, dones = self.replay_buffer.sample(self.batch_size)
# Compute predicted Q-values for current states
q_values = self.q_network(states)
q_values = q_values.gather(1, actions.unsqueeze(1)).squeeze(1) # Get Q-values for chosen actions
# Compute target Q-values
with torch.no_grad():
next_q_values = self.target_network(next_states)
max_next_q_values = next_q_values.max(1)[0]
target_q_values = rewards + self.gamma * max_next_q_values * (1 - dones)
# Compute loss
loss = nn.MSELoss()(q_values, target_q_values)
# Update the network
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def decay_epsilon(self, episode):
self.epsilon = max(self.epsilon_min, self.epsilon_max - episode / self.epsilon_decay)
def decay_epsilon_exp(self, episode):
self.epsilon = self.epsilon_min + (self.epsilon_max - self.epsilon_min) * np.exp(-self.epsilon_decay_rate * episode)
def load_model(self, path):
self.current_model.load_state_dict(torch.load(path, weights_only=True))
def save_model(self, path):
torch.save(self.q_network.state_dict(), path)