We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Q: TFusion代码的rank-reid部分由于函数调用较为复杂,使得我对于文章中P(ci,cj,Δij|Si||-Sj)的计算过程不是很明白。 具体来说,rank-reid部分st_estim.py中61行提到的fusion_param['renew_pid_path']我一直没找到具体的值,也一直不知道其具体含义,这使得我在理解融合模型三个具体的概率计算上出了问题。您是否愿意仔细介绍一下P(ci,cj,Δij|Si||-Sj)、P(ci,cj,Δij)这两个概率的计算过程(最好能举例)。就Market数据集来讲,计算P(ci,cj,Δij|Si||-Sj)需要视觉分类器判断两个模型包含同一个人,那么计算它是否面临较高的复杂度?
A:
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Q: TFusion代码的rank-reid部分由于函数调用较为复杂,使得我对于文章中P(ci,cj,Δij|Si||-Sj)的计算过程不是很明白。
具体来说,rank-reid部分st_estim.py中61行提到的fusion_param['renew_pid_path']我一直没找到具体的值,也一直不知道其具体含义,这使得我在理解融合模型三个具体的概率计算上出了问题。您是否愿意仔细介绍一下P(ci,cj,Δij|Si||-Sj)、P(ci,cj,Δij)这两个概率的计算过程(最好能举例)。就Market数据集来讲,计算P(ci,cj,Δij|Si||-Sj)需要视觉分类器判断两个模型包含同一个人,那么计算它是否面临较高的复杂度?
A:
另外,图像相似度计算可以用GPU加速,速度很快。
The text was updated successfully, but these errors were encountered: