forked from 7ossam81/EvoloPy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_boxplot.py
41 lines (29 loc) · 1.46 KB
/
plot_boxplot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def run(results_directory, optimizer, objectivefunc, Iterations):
plt.ioff()
fileResultsDetailsData = pd.read_csv(results_directory + '/experiment_details.csv')
for j in range (0, len(objectivefunc)):
#Box Plot
data = []
for i in range(len(optimizer)):
objective_name = objectivefunc[j]
optimizer_name = optimizer[i]
detailedData = fileResultsDetailsData[(fileResultsDetailsData["Optimizer"] == optimizer_name) & (fileResultsDetailsData["objfname"] == objective_name)]
detailedData = detailedData["Iter" + str(Iterations)]
detailedData = np.array(detailedData).T.tolist()
data.append(detailedData)
#, notch=True
box=plt.boxplot(data,patch_artist=True,labels=optimizer)
colors = ['#5c9eb7','#f77199', '#cf81d2','#4a5e6a','#f45b18',
'#ffbd35','#6ba5a1','#fcd1a1','#c3ffc1','#68549d',
'#1c8c44','#a44c40','#404636']
for patch, color in zip(box['boxes'], colors):
patch.set_facecolor(color)
plt.legend(handles= box['boxes'], labels=optimizer,
loc="top right", bbox_to_anchor=(1.2,1.02))
fig_name = results_directory + "/boxplot-" + objective_name + ".png"
plt.savefig(fig_name, bbox_inches='tight')
plt.clf()
#plt.show()