forked from travisbrady/word2phrase
-
Notifications
You must be signed in to change notification settings - Fork 1
/
word2phrase.py
131 lines (116 loc) · 4.78 KB
/
word2phrase.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"""
Copyright 2013 Travis Brady All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Python port of Mikolov's word2phrase.c
From: http://word2vec.googlecode.com/svn/trunk/word2phrase.c
"""
from __future__ import division
from itertools import tee, izip_longest
from collections import defaultdict
def pairwise(iterable):
"""
Adjacent pairs with overlap
>>> list(pairwise(range(5)))
[(0, 1), (1, 2), (2, 3), (3, 4), (4, None)]
"""
a, b = tee(iterable)
next(b)
return izip_longest(a, b)
def learn_vocab_from_train_iter(train_iter):
"""
Creates a frequency table mapping unigrams and bigrams to their
count of appearances in the training set
Analogous to LearnVocabFromTrainFile from original
"""
vocab = defaultdict(int)
train_words = 0
for line in train_iter:
for pair in pairwise(line):
vocab[pair[0]] += 1
if None not in pair:
vocab[pair] += 1
train_words += 1
return vocab, train_words
def filter_vocab(vocab, min_count):
"""
Filter elements from the vocab occurring fewer than min_count times
"""
return dict((k, v) for k, v in vocab.iteritems() if v >= min_count)
def train_model(train_iter, min_count=5, threshold=100.0, sep='_'):
"""
The whole file-to-file (or in this case iterator to iterator) enchilada
Does the same thing as Mikolov's original TrainModel in word2phrase.c
Parameters:
train_iter : an iterator containing tokenized documents
Example: [['hi', 'there', 'friend'],['coffee', 'is', 'enjoyable']]
min_count : min number of mentions for filter_vocab to keep word
threshold : pairs of words w/ score >= threshold are marked as phrases.
In word2phrase.c this meant the whitespace separating
two words was replaced with '_'
Yields:
One list per row in input train_iter
"""
vocab_iter, train_iter = tee(train_iter)
vocab, train_words = learn_vocab_from_train_iter(vocab_iter)
print "Done Vocab", len(vocab), train_words
vocab = filter_vocab(vocab, min_count)
print "Filtered Vocab", len(vocab)
for line in train_iter:
out_sentence = []
pairs = pairwise(line)
for pair in pairs:
pa = vocab.get(pair[0])
pb = vocab.get(pair[1])
pab = vocab.get(pair)
if all((pa, pb, pab)):
score = (pab - min_count) / pa / pb * train_words
else:
score = 0.0
if score > threshold:
next(pairs)
out_sentence.append(sep.join(pair))
else:
out_sentence.append(pair[0])
yield out_sentence
def main():
"""
When called as a script this mimics the original word2phrase.c
With a couple exceptions:
1. We don't truncate words to 60 chars as in the original
2. Whitespace handling doesn't exactly match the original
"""
from optparse import OptionParser
p = OptionParser()
p.add_option('--train', dest='train_file', help='Input file')
p.add_option('--output', dest='output_file', help='Output file')
p.add_option('--min-count', type="int", dest='min_count', default=5)
p.add_option('--threshold', type="float", dest='threshold', default=100.0)
p.add_option('--sep', dest='sep', default='_', help='Character used to separate phrases')
p.add_option('--iters', type='int', dest='iters',
default=1, help='Number of times to run train_model. More runs = longer phrases')
p.add_option('--threshold-discount', type='float',
dest='discount', default=0.05,
help='% of initial value by which to decrement threshold with each iter')
(options, _) = p.parse_args()
train_file = (line.split() for line in file(options.train_file))
out = train_file
for i in range(options.iters):
this_thresh = max(options.threshold - (i * options.discount * options.threshold), 0.0)
print "Iteration: %d Threshold: %6.2f" % (i, this_thresh)
out = train_model(out, min_count=options.min_count,
threshold=this_thresh,
sep=options.sep)
out_fh = open(options.output_file, 'w')
for row in out:
out_fh.write(' '.join(row) + '\n')
out_fh.close()
if __name__ == '__main__':
main()