-
Notifications
You must be signed in to change notification settings - Fork 72
/
ICP.h
543 lines (542 loc) · 24.1 KB
/
ICP.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
///////////////////////////////////////////////////////////////////////////////
/// "Sparse Iterative Closest Point"
/// by Sofien Bouaziz, Andrea Tagliasacchi, Mark Pauly
/// Copyright (C) 2013 LGG, EPFL
///////////////////////////////////////////////////////////////////////////////
/// 1) This file contains different implementations of the ICP algorithm.
/// 2) This code requires EIGEN and NANOFLANN.
/// 3) If OPENMP is activated some part of the code will be parallelized.
/// 4) This code is for now designed for 3D registration
/// 5) Two main input types are Eigen::Matrix3Xd or Eigen::Map<Eigen::Matrix3Xd>
///////////////////////////////////////////////////////////////////////////////
/// namespace nanoflann: NANOFLANN KD-tree adaptor for EIGEN
/// namespace RigidMotionEstimator: functions to compute the rigid motion
/// namespace SICP: sparse ICP implementation
/// namespace ICP: reweighted ICP implementation
///////////////////////////////////////////////////////////////////////////////
#ifndef ICP_H
#define ICP_H
#include "nanoflann.hpp"
#include <Eigen/Dense>
///////////////////////////////////////////////////////////////////////////////
namespace nanoflann {
/// KD-tree adaptor for working with data directly stored in an Eigen Matrix, without duplicating the data storage.
/// This code is adapted from the KDTreeEigenMatrixAdaptor class of nanoflann.hpp
template <class MatrixType, int DIM = -1, class Distance = nanoflann::metric_L2, typename IndexType = int>
struct KDTreeAdaptor {
typedef KDTreeAdaptor<MatrixType,DIM,Distance> self_t;
typedef typename MatrixType::Scalar num_t;
typedef typename Distance::template traits<num_t,self_t>::distance_t metric_t;
typedef KDTreeSingleIndexAdaptor< metric_t,self_t,DIM,IndexType> index_t;
index_t* index;
KDTreeAdaptor(const MatrixType &mat, const int leaf_max_size = 10) : m_data_matrix(mat) {
const size_t dims = mat.rows();
index = new index_t( dims, *this, nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size ) );
index->buildIndex();
}
~KDTreeAdaptor() {delete index;}
const MatrixType &m_data_matrix;
/// Query for the num_closest closest points to a given point (entered as query_point[0:dim-1]).
inline void query(const num_t *query_point, const size_t num_closest, IndexType *out_indices, num_t *out_distances_sq) const {
nanoflann::KNNResultSet<typename MatrixType::Scalar,IndexType> resultSet(num_closest);
resultSet.init(out_indices, out_distances_sq);
index->findNeighbors(resultSet, query_point, nanoflann::SearchParams());
}
/// Query for the closest points to a given point (entered as query_point[0:dim-1]).
inline IndexType closest(const num_t *query_point) const {
IndexType out_indices;
num_t out_distances_sq;
query(query_point, 1, &out_indices, &out_distances_sq);
return out_indices;
}
const self_t & derived() const {return *this;}
self_t & derived() {return *this;}
inline size_t kdtree_get_point_count() const {return m_data_matrix.cols();}
/// Returns the distance between the vector "p1[0:size-1]" and the data point with index "idx_p2" stored in the class:
inline num_t kdtree_distance(const num_t *p1, const size_t idx_p2,size_t size) const {
num_t s=0;
for (size_t i=0; i<size; i++) {
const num_t d= p1[i]-m_data_matrix.coeff(i,idx_p2);
s+=d*d;
}
return s;
}
/// Returns the dim'th component of the idx'th point in the class:
inline num_t kdtree_get_pt(const size_t idx, int dim) const {
return m_data_matrix.coeff(dim,idx);
}
/// Optional bounding-box computation: return false to default to a standard bbox computation loop.
template <class BBOX> bool kdtree_get_bbox(BBOX&) const {return false;}
};
}
///////////////////////////////////////////////////////////////////////////////
/// Compute the rigid motion for point-to-point and point-to-plane distances
namespace RigidMotionEstimator {
/// @param Source (one 3D point per column)
/// @param Target (one 3D point per column)
/// @param Confidence weights
template <typename Derived1, typename Derived2, typename Derived3>
Eigen::Affine3d point_to_point(Eigen::MatrixBase<Derived1>& X,
Eigen::MatrixBase<Derived2>& Y,
const Eigen::MatrixBase<Derived3>& w) {
/// Normalize weight vector
Eigen::VectorXd w_normalized = w/w.sum();
/// De-mean
Eigen::Vector3d X_mean, Y_mean;
for(int i=0; i<3; ++i) {
X_mean(i) = (X.row(i).array()*w_normalized.transpose().array()).sum();
Y_mean(i) = (Y.row(i).array()*w_normalized.transpose().array()).sum();
}
X.colwise() -= X_mean;
Y.colwise() -= Y_mean;
/// Compute transformation
Eigen::Affine3d transformation;
Eigen::Matrix3d sigma = X * w_normalized.asDiagonal() * Y.transpose();
Eigen::JacobiSVD<Eigen::Matrix3d> svd(sigma, Eigen::ComputeFullU | Eigen::ComputeFullV);
if(svd.matrixU().determinant()*svd.matrixV().determinant() < 0.0) {
Eigen::Vector3d S = Eigen::Vector3d::Ones(); S(2) = -1.0;
transformation.linear().noalias() = svd.matrixV()*S.asDiagonal()*svd.matrixU().transpose();
} else {
transformation.linear().noalias() = svd.matrixV()*svd.matrixU().transpose();
}
transformation.translation().noalias() = Y_mean - transformation.linear()*X_mean;
/// Apply transformation
X = transformation*X;
/// Re-apply mean
X.colwise() += X_mean;
Y.colwise() += Y_mean;
/// Return transformation
return transformation;
}
/// @param Source (one 3D point per column)
/// @param Target (one 3D point per column)
template <typename Derived1, typename Derived2>
inline Eigen::Affine3d point_to_point(Eigen::MatrixBase<Derived1>& X,
Eigen::MatrixBase<Derived2>& Y) {
return point_to_point(X, Y, Eigen::VectorXd::Ones(X.cols()));
}
/// @param Source (one 3D point per column)
/// @param Target (one 3D point per column)
/// @param Target normals (one 3D normal per column)
/// @param Confidence weights
/// @param Right hand side
template <typename Derived1, typename Derived2, typename Derived3, typename Derived4, typename Derived5>
Eigen::Affine3d point_to_plane(Eigen::MatrixBase<Derived1>& X,
Eigen::MatrixBase<Derived2>& Y,
Eigen::MatrixBase<Derived3>& N,
const Eigen::MatrixBase<Derived4>& w,
const Eigen::MatrixBase<Derived5>& u) {
typedef Eigen::Matrix<double, 6, 6> Matrix66;
typedef Eigen::Matrix<double, 6, 1> Vector6;
typedef Eigen::Block<Matrix66, 3, 3> Block33;
/// Normalize weight vector
Eigen::VectorXd w_normalized = w/w.sum();
/// De-mean
Eigen::Vector3d X_mean;
for(int i=0; i<3; ++i)
X_mean(i) = (X.row(i).array()*w_normalized.transpose().array()).sum();
X.colwise() -= X_mean;
Y.colwise() -= X_mean;
/// Prepare LHS and RHS
Matrix66 LHS = Matrix66::Zero();
Vector6 RHS = Vector6::Zero();
Block33 TL = LHS.topLeftCorner<3,3>();
Block33 TR = LHS.topRightCorner<3,3>();
Block33 BR = LHS.bottomRightCorner<3,3>();
Eigen::MatrixXd C = Eigen::MatrixXd::Zero(3,X.cols());
#pragma omp parallel
{
#pragma omp for
for(int i=0; i<X.cols(); i++) {
C.col(i) = X.col(i).cross(N.col(i));
}
#pragma omp sections nowait
{
#pragma omp section
for(int i=0; i<X.cols(); i++) TL.selfadjointView<Eigen::Upper>().rankUpdate(C.col(i), w(i));
#pragma omp section
for(int i=0; i<X.cols(); i++) TR += (C.col(i)*N.col(i).transpose())*w(i);
#pragma omp section
for(int i=0; i<X.cols(); i++) BR.selfadjointView<Eigen::Upper>().rankUpdate(N.col(i), w(i));
#pragma omp section
for(int i=0; i<C.cols(); i++) {
double dist_to_plane = -((X.col(i) - Y.col(i)).dot(N.col(i)) - u(i))*w(i);
RHS.head<3>() += C.col(i)*dist_to_plane;
RHS.tail<3>() += N.col(i)*dist_to_plane;
}
}
}
LHS = LHS.selfadjointView<Eigen::Upper>();
/// Compute transformation
Eigen::Affine3d transformation;
Eigen::LDLT<Matrix66> ldlt(LHS);
RHS = ldlt.solve(RHS);
transformation = Eigen::AngleAxisd(RHS(0), Eigen::Vector3d::UnitX()) *
Eigen::AngleAxisd(RHS(1), Eigen::Vector3d::UnitY()) *
Eigen::AngleAxisd(RHS(2), Eigen::Vector3d::UnitZ());
transformation.translation() = RHS.tail<3>();
/// Apply transformation
X = transformation*X;
/// Re-apply mean
X.colwise() += X_mean;
Y.colwise() += X_mean;
/// Return transformation
return transformation;
}
/// @param Source (one 3D point per column)
/// @param Target (one 3D point per column)
/// @param Target normals (one 3D normal per column)
/// @param Confidence weights
template <typename Derived1, typename Derived2, typename Derived3, typename Derived4>
inline Eigen::Affine3d point_to_plane(Eigen::MatrixBase<Derived1>& X,
Eigen::MatrixBase<Derived2>& Yp,
Eigen::MatrixBase<Derived3>& Yn,
const Eigen::MatrixBase<Derived4>& w) {
return point_to_plane(X, Yp, Yn, w, Eigen::VectorXd::Zero(X.cols()));
}
}
///////////////////////////////////////////////////////////////////////////////
/// ICP implementation using ADMM/ALM/Penalty method
namespace SICP {
struct Parameters {
bool use_penalty = false; /// if use_penalty then penalty method else ADMM or ALM (see max_inner)
double p = 1.0; /// p norm
double mu = 10.0; /// penalty weight
double alpha = 1.2; /// penalty increase factor
double max_mu = 1e5; /// max penalty
int max_icp = 100; /// max ICP iteration
int max_outer = 100; /// max outer iteration
int max_inner = 1; /// max inner iteration. If max_inner=1 then ADMM else ALM
double stop = 1e-5; /// stopping criteria
bool print_icpn = false; /// (debug) print ICP iteration
};
/// Shrinkage operator (Automatic loop unrolling using template)
template<unsigned int I>
inline double shrinkage(double mu, double n, double p, double s) {
return shrinkage<I-1>(mu, n, p, 1.0 - (p/mu)*std::pow(n, p-2.0)*std::pow(s, p-1.0));
}
template<>
inline double shrinkage<0>(double, double, double, double s) {return s;}
/// 3D Shrinkage for point-to-point
template<unsigned int I>
inline void shrink(Eigen::Matrix3Xd& Q, double mu, double p) {
double Ba = std::pow((2.0/mu)*(1.0-p), 1.0/(2.0-p));
double ha = Ba + (p/mu)*std::pow(Ba, p-1.0);
#pragma omp parallel for
for(int i=0; i<Q.cols(); ++i) {
double n = Q.col(i).norm();
double w = 0.0;
if(n > ha) w = shrinkage<I>(mu, n, p, (Ba/n + 1.0)/2.0);
Q.col(i) *= w;
}
}
/// 1D Shrinkage for point-to-plane
template<unsigned int I>
inline void shrink(Eigen::VectorXd& y, double mu, double p) {
double Ba = std::pow((2.0/mu)*(1.0-p), 1.0/(2.0-p));
double ha = Ba + (p/mu)*std::pow(Ba, p-1.0);
#pragma omp parallel for
for(int i=0; i<y.rows(); ++i) {
double n = std::abs(y(i));
double s = 0.0;
if(n > ha) s = shrinkage<I>(mu, n, p, (Ba/n + 1.0)/2.0);
y(i) *= s;
}
}
/// Sparse ICP with point to point
/// @param Source (one 3D point per column)
/// @param Target (one 3D point per column)
/// @param Parameters
template <typename Derived1, typename Derived2>
void point_to_point(Eigen::MatrixBase<Derived1>& X,
Eigen::MatrixBase<Derived2>& Y,
Parameters par = Parameters()) {
/// Build kd-tree
nanoflann::KDTreeAdaptor<Eigen::MatrixBase<Derived2>, 3, nanoflann::metric_L2_Simple> kdtree(Y);
/// Buffers
Eigen::Matrix3Xd Q = Eigen::Matrix3Xd::Zero(3, X.cols());
Eigen::Matrix3Xd Z = Eigen::Matrix3Xd::Zero(3, X.cols());
Eigen::Matrix3Xd C = Eigen::Matrix3Xd::Zero(3, X.cols());
Eigen::Matrix3Xd Xo1 = X;
Eigen::Matrix3Xd Xo2 = X;
/// ICP
for(int icp=0; icp<par.max_icp; ++icp) {
if(par.print_icpn) std::cout << "Iteration #" << icp << "/" << par.max_icp << std::endl;
/// Find closest point
#pragma omp parallel for
for(int i=0; i<X.cols(); ++i) {
Q.col(i) = Y.col(kdtree.closest(X.col(i).data()));
}
/// Computer rotation and translation
double mu = par.mu;
for(int outer=0; outer<par.max_outer; ++outer) {
double dual = 0.0;
for(int inner=0; inner<par.max_inner; ++inner) {
/// Z update (shrinkage)
Z = X-Q+C/mu;
shrink<3>(Z, mu, par.p);
/// Rotation and translation update
Eigen::Matrix3Xd U = Q+Z-C/mu;
RigidMotionEstimator::point_to_point(X, U);
/// Stopping criteria
dual = (X-Xo1).colwise().norm().maxCoeff();
Xo1 = X;
if(dual < par.stop) break;
}
/// C update (lagrange multipliers)
Eigen::Matrix3Xd P = X-Q-Z;
if(!par.use_penalty) C.noalias() += mu*P;
/// mu update (penalty)
if(mu < par.max_mu) mu *= par.alpha;
/// Stopping criteria
double primal = P.colwise().norm().maxCoeff();
if(primal < par.stop && dual < par.stop) break;
}
/// Stopping criteria
double stop = (X-Xo2).colwise().norm().maxCoeff();
Xo2 = X;
if(stop < par.stop) break;
}
}
/// Sparse ICP with point to plane
/// @param Source (one 3D point per column)
/// @param Target (one 3D point per column)
/// @param Target normals (one 3D normal per column)
/// @param Parameters
template <typename Derived1, typename Derived2, typename Derived3>
void point_to_plane(Eigen::MatrixBase<Derived1>& X,
Eigen::MatrixBase<Derived2>& Y,
Eigen::MatrixBase<Derived3>& N,
Parameters par = Parameters()) {
/// Build kd-tree
nanoflann::KDTreeAdaptor<Eigen::MatrixBase<Derived2>, 3, nanoflann::metric_L2_Simple> kdtree(Y);
/// Buffers
Eigen::Matrix3Xd Qp = Eigen::Matrix3Xd::Zero(3, X.cols());
Eigen::Matrix3Xd Qn = Eigen::Matrix3Xd::Zero(3, X.cols());
Eigen::VectorXd Z = Eigen::VectorXd::Zero(X.cols());
Eigen::VectorXd C = Eigen::VectorXd::Zero(X.cols());
Eigen::Matrix3Xd Xo1 = X;
Eigen::Matrix3Xd Xo2 = X;
/// ICP
for(int icp=0; icp<par.max_icp; ++icp) {
if(par.print_icpn) std::cout << "Iteration #" << icp << "/" << par.max_icp << std::endl;
/// Find closest point
#pragma omp parallel for
for(int i=0; i<X.cols(); ++i) {
int id = kdtree.closest(X.col(i).data());
Qp.col(i) = Y.col(id);
Qn.col(i) = N.col(id);
}
/// Computer rotation and translation
double mu = par.mu;
for(int outer=0; outer<par.max_outer; ++outer) {
double dual = 0.0;
for(int inner=0; inner<par.max_inner; ++inner) {
/// Z update (shrinkage)
Z = (Qn.array()*(X-Qp).array()).colwise().sum().transpose()+C.array()/mu;
shrink<3>(Z, mu, par.p);
/// Rotation and translation update
Eigen::VectorXd U = Z-C/mu;
RigidMotionEstimator::point_to_plane(X, Qp, Qn, Eigen::VectorXd::Ones(X.cols()), U);
/// Stopping criteria
dual = (X-Xo1).colwise().norm().maxCoeff();
Xo1 = X;
if(dual < par.stop) break;
}
/// C update (lagrange multipliers)
Eigen::VectorXf P = (Qn.array()*(X-Qp).array()).colwise().sum().transpose()-Z.array();
if(!par.use_penalty) C.noalias() += mu*P;
/// mu update (penalty)
if(mu < par.max_mu) mu *= par.alpha;
/// Stopping criteria
double primal = P.array().abs().maxCoeff();
if(primal < par.stop && dual < par.stop) break;
}
/// Stopping criteria
double stop = (X-Xo2).colwise().norm().maxCoeff();
Xo2 = X;
if(stop < par.stop) break;
}
}
}
///////////////////////////////////////////////////////////////////////////////
/// ICP implementation using iterative reweighting
namespace ICP {
enum Function {
PNORM,
TUKEY,
FAIR,
LOGISTIC,
TRIMMED,
NONE
};
class Parameters {
public:
Parameters() : f(NONE),
p(0.1),
max_icp(100),
max_outer(100),
stop(1e-5) {}
/// Parameters
Function f; /// robust function type
double p; /// paramter of the robust function
int max_icp; /// max ICP iteration
int max_outer; /// max outer iteration
double stop; /// stopping criteria
};
/// Weight functions
/// @param Residuals
/// @param Parameter
void uniform_weight(Eigen::VectorXd& r) {
r = Eigen::VectorXd::Ones(r.rows());
}
/// @param Residuals
/// @param Parameter
void pnorm_weight(Eigen::VectorXd& r, double p, double reg=1e-8) {
for(int i=0; i<r.rows(); ++i) {
r(i) = p/(std::pow(r(i),2-p) + reg);
}
}
/// @param Residuals
/// @param Parameter
void tukey_weight(Eigen::VectorXd& r, double p) {
for(int i=0; i<r.rows(); ++i) {
if(r(i) > p) r(i) = 0.0;
else r(i) = std::pow((1.0 - std::pow(r(i)/p,2.0)), 2.0);
}
}
/// @param Residuals
/// @param Parameter
void fair_weight(Eigen::VectorXd& r, double p) {
for(int i=0; i<r.rows(); ++i) {
r(i) = 1.0/(1.0 + r(i)/p);
}
}
/// @param Residuals
/// @param Parameter
void logistic_weight(Eigen::VectorXd& r, double p) {
for(int i=0; i<r.rows(); ++i) {
r(i) = (p/r(i))*std::tanh(r(i)/p);
}
}
struct sort_pred {
bool operator()(const std::pair<int,double> &left,
const std::pair<int,double> &right) {
return left.second < right.second;
}
};
/// @param Residuals
/// @param Parameter
void trimmed_weight(Eigen::VectorXd& r, double p) {
std::vector<std::pair<int, double> > sortedDist(r.rows());
for(int i=0; i<r.rows(); ++i) {
sortedDist[i] = std::pair<int, double>(i,r(i));
}
std::sort(sortedDist.begin(), sortedDist.end(), sort_pred());
r.setZero();
int nbV = r.rows()*p;
for(int i=0; i<nbV; ++i) {
r(sortedDist[i].first) = 1.0;
}
}
/// @param Function type
/// @param Residuals
/// @param Parameter
void robust_weight(Function f, Eigen::VectorXd& r, double p) {
switch(f) {
case PNORM: pnorm_weight(r,p); break;
case TUKEY: tukey_weight(r,p); break;
case FAIR: fair_weight(r,p); break;
case LOGISTIC: logistic_weight(r,p); break;
case TRIMMED: trimmed_weight(r,p); break;
case NONE: uniform_weight(r); break;
default: uniform_weight(r); break;
}
}
/// Reweighted ICP with point to point
/// @param Source (one 3D point per column)
/// @param Target (one 3D point per column)
/// @param Parameters
void point_to_point(Eigen::Matrix3Xd& X,
Eigen::Matrix3Xd& Y,
Parameters par = Parameters()) {
/// Build kd-tree
nanoflann::KDTreeAdaptor<Eigen::Matrix3Xd, 3, nanoflann::metric_L2_Simple> kdtree(Y);
/// Buffers
Eigen::Matrix3Xd Q = Eigen::Matrix3Xd::Zero(3, X.cols());
Eigen::VectorXd W = Eigen::VectorXd::Zero(X.cols());
Eigen::Matrix3Xd Xo1 = X;
Eigen::Matrix3Xd Xo2 = X;
/// ICP
for(int icp=0; icp<par.max_icp; ++icp) {
/// Find closest point
#pragma omp parallel for
for(int i=0; i<X.cols(); ++i) {
Q.col(i) = Y.col(kdtree.closest(X.col(i).data()));
}
/// Computer rotation and translation
for(int outer=0; outer<par.max_outer; ++outer) {
/// Compute weights
W = (X-Q).colwise().norm();
robust_weight(par.f, W, par.p);
/// Rotation and translation update
RigidMotionEstimator::point_to_point(X, Q, W);
/// Stopping criteria
double stop1 = (X-Xo1).colwise().norm().maxCoeff();
Xo1 = X;
if(stop1 < par.stop) break;
}
/// Stopping criteria
double stop2 = (X-Xo2).colwise().norm().maxCoeff();
Xo2 = X;
if(stop2 < par.stop) break;
}
}
/// Reweighted ICP with point to plane
/// @param Source (one 3D point per column)
/// @param Target (one 3D point per column)
/// @param Target normals (one 3D normal per column)
/// @param Parameters
template <typename Derived1, typename Derived2, typename Derived3>
void point_to_plane(Eigen::MatrixBase<Derived1>& X,
Eigen::MatrixBase<Derived2>& Y,
Eigen::MatrixBase<Derived3>& N,
Parameters par = Parameters()) {
/// Build kd-tree
nanoflann::KDTreeAdaptor<Eigen::MatrixBase<Derived2>, 3, nanoflann::metric_L2_Simple> kdtree(Y);
/// Buffers
Eigen::Matrix3Xd Qp = Eigen::Matrix3Xd::Zero(3, X.cols());
Eigen::Matrix3Xd Qn = Eigen::Matrix3Xd::Zero(3, X.cols());
Eigen::VectorXd W = Eigen::VectorXd::Zero(X.cols());
Eigen::Matrix3Xd Xo1 = X;
Eigen::Matrix3Xd Xo2 = X;
/// ICP
for(int icp=0; icp<par.max_icp; ++icp) {
/// Find closest point
#pragma omp parallel for
for(int i=0; i<X.cols(); ++i) {
int id = kdtree.closest(X.col(i).data());
Qp.col(i) = Y.col(id);
Qn.col(i) = N.col(id);
}
/// Computer rotation and translation
for(int outer=0; outer<par.max_outer; ++outer) {
/// Compute weights
W = (Qn.array()*(X-Qp).array()).colwise().sum().abs().transpose();
robust_weight(par.f, W, par.p);
/// Rotation and translation update
RigidMotionEstimator::point_to_plane(X, Qp, Qn, W);
/// Stopping criteria
double stop1 = (X-Xo1).colwise().norm().maxCoeff();
Xo1 = X;
if(stop1 < par.stop) break;
}
/// Stopping criteria
double stop2 = (X-Xo2).colwise().norm().maxCoeff() ;
Xo2 = X;
if(stop2 < par.stop) break;
}
}
}
///////////////////////////////////////////////////////////////////////////////
#endif