-
Notifications
You must be signed in to change notification settings - Fork 4
/
predefined_evolvers.py
33 lines (33 loc) · 1.42 KB
/
predefined_evolvers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# https://docs.ray.io/en/latest/tune/api/suggestion.html
EVOLVER_TYPES = [
# Uses https://ax.dev/ to optimize hyps
# [ray.tune.search.ax.ax_search.AxSearch]
"ax", # pip install ax-platform sqlalchemy
# wrapper around Optuna
# [ray.tune.search.optuna.OptunaSearch]
"optuna", # pip install optuna
# uses Bayesian Optimization to improve the hyperparameter search
# [ray.tune.search.bohb.TuneBOHB]
"bohb", # pip install hpbandster ConfigSpace
# search algorithm based on randomized local search [allows to specify a low-cost initial point as input]
# [ray.tune.search.flaml.CFO]
"cfo", # pip install flaml
# Uses Dragonfly to optimize hyps
# [ray.tune.search.dragonfly.DragonflySearch]
"dragonfly", # pip install dragonfly-opt
# Heteroscedastic Evolutionary Bayesian Optimization
# [ray.tune.search.hebo.HEBOSearch]
# "hebo", # pip install HEBO>=0.2.0 (?)
# Uses Nevergrad to optimize hyps
# [ray.tune.search.nevergrad.NevergradSearch]
"nevergrad", # pip install nevergrad
# Scikit Optimize (skopt)
# [ray.tune.search.skopt.SkOptSearch]
"skopt", # pip install scikit-optimize
# A wrapper around ZOOpt
# [ray.tune.search.zoopt.ZOOptSearch]
"zoopt", # pip install zoopt
# [default] do hyps search via random and grid search
# [ray.tune.search.basic_variant.BasicVariantGenerator]
"random",
]