-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonnx_models.py
194 lines (174 loc) · 5.87 KB
/
onnx_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from abc import ABC
import cv2
import numpy as np
import onnxruntime as ort
class OnnxModel(ABC):
def __init__(self, model_path, image_size):
self.model_path = model_path
self.image_size = image_size
self.mean = np.array([127, 127, 127], dtype=np.float32)
self.std = np.array([128, 128, 128], dtype=np.float32)
options, prov_opts, providers = self.get_onnx_provider()
self.sess = ort.InferenceSession(
model_path, sess_options=options, providers=providers, provider_options=prov_opts
)
self._get_input_output()
def preprocess(self, frame):
"""
Preprocess frame
Parameters
----------
frame : np.ndarray
Frame to preprocess
Returns
-------
np.ndarray
Preprocessed frame
"""
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, self.image_size)
image = (image - self.mean) / self.std
image = np.transpose(image, [2, 0, 1])
image = np.expand_dims(image, axis=0)
return image
def _get_input_output(self):
inputs = self.sess.get_inputs()
self.inputs = "".join(
[
f"\n {i}: {input.name}" f" Shape: ({','.join(map(str, input.shape))})" f" Dtype: {input.type}"
for i, input in enumerate(inputs)
]
)
outputs = self.sess.get_outputs()
self.outputs = "".join(
[
f"\n {i}: {output.name}" f" Shape: ({','.join(map(str, output.shape))})" f" Dtype: {output.type}"
for i, output in enumerate(outputs)
]
)
@staticmethod
def get_onnx_provider():
"""
Get onnx provider
Returns
-------
options : onnxruntime.SessionOptions
Session options
prov_opts : dict
Provider options
providers : list
List of providers
"""
providers = ["CPUExecutionProvider"]
options = ort.SessionOptions()
options.enable_mem_pattern = False
options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
prov_opts = []
print("Using ONNX Runtime", ort.get_device())
if "DML" in ort.get_device():
prov_opts = [{"device_id": 0}]
providers.append("DmlExecutionProvider")
elif "GPU" in ort.get_device():
prov_opts = [
{
"device_id": 0,
"arena_extend_strategy": "kNextPowerOfTwo",
"gpu_mem_limit": 2 * 1024 * 1024 * 1024,
"cudnn_conv_algo_search": "EXHAUSTIVE",
"do_copy_in_default_stream": True,
}
]
providers.append("CUDAExecutionProvider")
return options, prov_opts, providers
def __repr__(self):
return (
f"Providers: {self.sess.get_providers()}\n"
f"Model: {self.sess.get_modelmeta().description}\n"
f"Version: {self.sess.get_modelmeta().version}\n"
f"Inputs: {self.inputs}\n"
f"Outputs: {self.outputs}"
)
class HandDetection(OnnxModel):
def __init__(self, model_path, image_size=(320, 240)):
super().__init__(model_path, image_size)
self.image_size = image_size
self.sess = ort.InferenceSession(model_path)
self.input_name = self.sess.get_inputs()[0].name
self.output_names = [output.name for output in self.sess.get_outputs()]
def __call__(self, frame):
input_tensor = self.preprocess(frame)
boxes, _, probs = self.sess.run(self.output_names, {self.input_name: input_tensor})
width, height = frame.shape[1], frame.shape[0]
boxes[:, 0] *= width
boxes[:, 1] *= height
boxes[:, 2] *= width
boxes[:, 3] *= height
return boxes.astype(np.int32), probs
class HandClassification(OnnxModel):
def __init__(self, model_path, image_size=(128, 128)):
super().__init__(model_path, image_size)
@staticmethod
def get_square(box, image):
"""
Get square box
Parameters
----------
box : np.ndarray
Box coordinates (x1, y1, x2, y2)
image : np.ndarray
Image for shape
"""
height, width, _ = image.shape
x0, y0, x1, y1 = box
w, h = x1 - x0, y1 - y0
if h < w:
y0 = y0 - int((w - h) / 2)
y1 = y0 + w
if h > w:
x0 = x0 - int((h - w) / 2)
x1 = x0 + h
x0 = max(0, x0)
y0 = max(0, y0)
x1 = min(width - 1, x1)
y1 = min(height - 1, y1)
return x0, y0, x1, y1
def get_crops(self, frame, bboxes):
"""
Get crops from frame
Parameters
----------
frame : np.ndarray
Frame to crop from bboxes
bboxes : np.ndarray
Bounding boxes
Returns
-------
crops : np.ndarray
Crops from frame
"""
crops = []
for bbox in bboxes:
bbox = self.get_square(bbox, frame)
crop = frame[bbox[1] : bbox[3], bbox[0] : bbox[2]]
crops.append(crop)
return crops
def __call__(self, image, bboxes):
"""
Get predictions from model
Parameters
----------
image : np.ndarray
Image to predict
bboxes : np.ndarray
Bounding boxes
Returns
-------
predictions : np.ndarray
Predictions from model
"""
crops = self.get_crops(image, bboxes)
crops = [self.preprocess(crop) for crop in crops]
input_name = self.sess.get_inputs()[0].name
outputs = self.sess.run(None, {input_name: np.concatenate(crops, axis=0)})[0]
labels = np.argmax(outputs, axis=1)
return labels